Advertisement

Integrated Innovative Biotechnology for Optimization of Environmental Bioprocesses and a Green Economy

  • Jan W. Dobrowolski
  • Dawid Bedla
  • Tomasz Czech
  • Florian Gambuś
  • Krystyna Górecka
  • Waldemar Kiszczak
  • Tomasz Kuźniar
  • Robert Mazur
  • Agata Nowak
  • Malgorzata Śliwka
  • Obid Tursunov
  • Aleksandra Wagner
  • Jerzy Wieczorek
  • Magdalena Zabochnicka-Świątek
Chapter

Abstract

A systematic approach to sustainable management of natural resources incorporates integration of innovative biotechnologies and eco-engineering. Here we review complementary eco-innovations for sustainable development in different regions. One of the newer biotechnologies is laser photostimulation of different species of plants and microorganisms to increase their adaptability to xenobiotics in soil, air, and water. Empirically selected algorithms of laser irradiation significantly increase biodegradation of hydrocarbons, phytoremediation of trace metals by willow Salix sp., elephant grass Miscanthus x giganteus, Virginian mallow Sida hermaphrodita, and to increase tolerance of different species of plants to petrochemical pollutants and efficiency of reclamation of contaminated areas and tolerance to salinity of soil and suboptimal temperatures as well as water deficiency. This biotechnology is also useful for biomass enhancement and bio-energy production under suboptimal conditions for more efficient vegetative multiplication of some vegetables and development of sustainable agriculture, forestry, protection of the landscape, and biodiversity. Integration of transdisciplinary cooperation and application of complementary biotechnologies and innovative methods of environmental pollutant bioremediation (such as wastewater treatment) and reclamation, supported by the implementation of a neural network, can optimize bioprocesses that are useful for a better quality of life, globally. Long-term research-developing studies are supplemented by problem-solving training and case studies in different regions (including ecotourism, recreation, and promotion of ecological culture), long distance education and life-long education for the common action of experts and knowledge-based society, promoting sustainable development that is based on integrated biological sciences and sustainable models of consumption.

Keywords

Sustainable development Bio-based economy Climate change Adaptation Laser biostimulation Microalgae biomass Bio-energy Bioremediation Biodiversity Environmental education 

Notes

Acknowledgements

The scientific work presented in Sect. 3 was supported by the National Centre for Research and Development, as Strategic Project PS/E/2/66420/10 “Advanced Technologies for Energy Generation: Oxy-combustion technology for PC and FBC boilers with CO2 capture”. The support is gratefully acknowledged.

References

  1. Adamski P, Barszcz P, Bąba W, Cierlik G, Jarkiewicz K, Kalemba A, Kjas ZJ, Kurzyński J, Mielnicka B, Mróz W, Partyka J, Perzanowska J, Ślizowski J, Tadel A, Zarzyka-Ryszka M (2005) Skarby Przyrody i kultury Krakowa i okolic. Ekologiczne ścieżki edukacyjne. IOP PAN, OSF WT PAT, INOŚ UJ, Wyd. WAM, Kraków. 495 p. ISBN: 83-7318-608-5Google Scholar
  2. Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA working paper no. 12-03. June 2012. Agricultural Development Economics Division. Food and Agriculture Organization of the United Nations, pp 1–154. www.fao.org/economic/esa
  3. Amaya K, Tanuma K, Dobrowolski JW (1990) “Bando” biotechnology of sewage treatment and its application in Japan and Poland. In: Norwicz K, Rajpolt B, Dobrowolski JW (eds) Perspektywy zastosowania nowej metody oczyszczania ścieków w Polsce na tle wyników badań testowych japońskiej oczyszczalni “Bando”. Zeszyty Naukowe AGH, Sozologia i Sozotechnika, z. 28:7–20. Pages 147, PL ISSN 0138-0923Google Scholar
  4. Avery PB, Faull J, Simmonds MSJ (2004) Effect of different photoperiods on the growth, infectivity and colonization of Trinidadian strains of Paecilomyces fumosoroseus on the greenhouse whitefly, Trialeurodes vaporariorum, using a glass slide bioassay. J Insect Sci 4(38):10. https://doi.org/10.1080/09583157.2010.515299 CrossRefGoogle Scholar
  5. Badek B, Romanowska-Duda Z, Grzesik M, Kuras A (2016) Physiological markers for assessing germinability of Lycopersicon esculentum seeds primed by environment-friendly methods. Pol J Environ Stud 25(5):1831–1838. https://doi.org/10.15244/pjoes/63065 CrossRefGoogle Scholar
  6. Bagheri M, Mirbagheria SA, Ehteshamia M, Bagheriba Z (2015) Modeling of a sequencing batch reactor treating municipal wastewater using multi-layer perceptron and radial basis function artificial neural networks. Process Saf Environ 93:111–123. https://doi.org/10.1016/j.psep.2014.04.006 CrossRefGoogle Scholar
  7. Bain RL (2007) World biofuels assessment, worldwide biomass potential: technology characterizations. National Renewable Energy Laboratory, Golden. NREL/MP-510-42467Google Scholar
  8. Bartoszewicz M, Michalska M, Cieszynska-Semenowicz M, Czernych R, Wolska L (2016) The problem of wastewater in shale gas exploitation. The influence of fracturing flowback water on activated sludge at a wastewater treatment plant. Pol J Environ Stud 3(5):1839–1845. ISBN: 1230-1485CrossRefGoogle Scholar
  9. Bauen A, Berndes G, Junginger M, Londo M, Vuille F, Ball R (2009) Bioenergy – a sustainable and reliable energy source: a review of status and prospects. IEA Bioenergy. IEA Bioenergy ExCo:2009:06Google Scholar
  10. Blechman A (2007) Pigeons-the fascinating saga of the world’s most revered and reviled bird. University of Queensland Press, St Lucia, 256 p. ISBN 10:0702236411 ISBN 13:9780702236419Google Scholar
  11. Böker A, van Rijn P (eds) (2015) Bio-synthetic hybrid materials and bionanoparticles. A biological chemical approach towards material science, Royal Society of Chemistry, Cambridge, p 314. ISBN: 978-1-84973-822-4Google Scholar
  12. Carlon C, Dalla Valle M, Marconimi A (2004) Regression models to predict water-soil heavy metals partion coefficients in risk assessment studies. Environ Pollut 127:109–115. ISSN 0269-7491CrossRefPubMedGoogle Scholar
  13. Cazetta ML, Martins PMM, Monti R, Contiero J (2005) Yacon (Polymnia sanchifolia) extract as a substrate to produce inulinase by Kluyveromyces marxianus var. bulgaricus. J Food Process Eng 66(3):301–305. https://doi.org/10.1016/jjfoodeng.2004.03.022 CrossRefGoogle Scholar
  14. Chum H, Faaij A, Moreira J, Berndes G, Dhamija P, Dong H (2014) Bioenergy. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner SJ. https://www.ipcc.ch/pdf/special-reports/srren/SRREN_FD_SPM_final.pdf
  15. Cigizoglu HK (2004) Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons. Adv Water Resour 27:185–195. ISSN: 0309-1708CrossRefGoogle Scholar
  16. Cortes J, Shaw E (2006) The Gibraltar macaques: management and future. In: Hodges JK, Cortes J (eds) The Barbary macaque: biology, management and conservation. Nottingham University Press, Nottingham, pp 199–210. https://doi.org/10.1007/s10764-008-9269-2 Google Scholar
  17. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and floraGoogle Scholar
  18. Culture Collection of Baltic Algae (CCBA) Institute of Oceanography, University of Gdansk, Poland. http://ccba.ug.edu.pl/pages/en/home.php (on-line access: October 5, 2017)
  19. Czech T, Gambuś F, Wieczorek J (2013) Assessment of chemical composition of waste materials from hard coal burning in view of their agricultural and environmental applications. Ecol Eng 34:89–95. https://doi.org/10.12912/23920629/323 Google Scholar
  20. Czech T, Gambus F, Wieczorek J (2014) Mathematical forecasting methods for predicting lead contents in animal organs on the basis of the environmental conditions. Ecotoxicol Environ Saf 110:232–238. https://doi.org/10.1016/j.ecoenv.2014.09.006 CrossRefPubMedGoogle Scholar
  21. de Andrade Franco JL (2013) The concept of biodiversity and the history of conservation biology: from wilderness preservation to biodiversity conservation. Historia 32(2). https://doi.org/10.1590/S0101-90742013000200003
  22. Directive 2009/147/EC of the European Parliament and of the Council of 30 November 2009 on the conservation of wild birds (2009) Off J European Union L 20/7, 26/01/2010Google Scholar
  23. Dobrowolski JW (1986) Laser biostimulation and nutritional prevention of deficiency of essential trace elements. Magazine of Hamdard Tibbi College, Hamdard University Press, pp 5–11Google Scholar
  24. Dobrowolski JW (1996) The influence of laser photostimulation of plants on bioaccumulation of elements. In: Pais I (ed) Proceedings of the international symposium new perspectives in the research of hardly known trace elements. University of Horticulture and Food Industry, Budapest, pp 47–52Google Scholar
  25. Dobrowolski JW (2000a) Perspectives of application of laser biotechnology in management of the natural environment. Pol J Environ Stud 10:7–9. ISSN: 1230-1483Google Scholar
  26. Dobrowolski JW (2000b) Application of laser biotechnology in environmental management, The world congress on biotechnology, Section VI, Environmental biotechnology, vol 3. Society of Chemical Engineering and Biotechnology, BerlinGoogle Scholar
  27. Dobrowolski JW (2001a) Perspectives of application of laser biotechnology in management of the natural environment. Pol J Environ Stud 10:7–12. ISSN: 1230-1483Google Scholar
  28. Dobrowolski JW (2001b) Ecotoxicology, human ecology, laser biotechnology in primary prevention of environmental health hazard. Przegl Lek 58(7):1–4. ISSN: 0033-2240PubMedGoogle Scholar
  29. Dobrowolski JW (2006a) Innovative biological monitoring and laser biotechnology in management of the natural environment. In: Sustainable development of rivers regions, La Sapienza University, Roma. ISBN-10: 88-6049-018-9, ISBN-13: 978-88-6049-018-6Google Scholar
  30. Dobrowolski JW (2006b) Preface: the main purposes of the 11th international conference Euro-Eco 2006 interdisciplinary co-operation for the sustainable development, proposals for the future cooperation. Pol J Environ Stud 15(5C):1–3 and 196–197. ISSN: 1230-1483Google Scholar
  31. Dobrowolski JW (2014) Chapter 4: University education on sustainable development as a contribution to the shared responsibility of experts and knowledgebased society. In: Mulej M, Dyck RG (eds) Social responsibility-sustainability, education and management, pp 96–118. https://doi.org/10.2174/97816080590411140201 Google Scholar
  32. Dobrowolski JW (2016a) Laser biostimulation to enhance biodegradation of hydrocarbons, bioremediation of trace metals, reclamation of deteriorated areas, biomass production and protection of biodiversity. In: Carioca JOB, Moura Barros L, Coelho AL (eds) Biotechnology for the development of a green economy. IUPAC, Universida de Federal Ceara, Fortaleza, pp 141–150. ISBN: 978-85-420-0788-6Google Scholar
  33. Dobrowolski JW (2016b) Laser biotechnology for more efficient bioremediation and promotion sustainable development. In: Carioca JOB, Moura Barros L, Coelho AL (eds) Biotechnology for the development of a green economy. IUPAC, Universida de Federal Ceara, Fortaleza, pp 151–164. ISBN: 978-85-420-0788-6Google Scholar
  34. Dobrowolski JW, Różanowski B (1998) In: Anke M et al (eds) The influence of laser light on accumulation of selected macro-trace and ultra elements by some plants. Menegeund Spurenelemente, vol 18. Friedrich-Schiller-Universitat, Jena, pp 147–156Google Scholar
  35. Dobrowolski JW, Wagner AW (2006) Interdisciplinary co-operation for the sustainable development of historical cities and protected areas. Perspectives of sound tourism. Pol J Environ Stud 15(5c) ISSN: 1230-1483Google Scholar
  36. Dobrowolski JW, Zielinska-Loek A (2002) In: Anke M et al (eds) The laser photostimulation of willow cuttings planted alongside main roads and change of concentration of elements in the willow’s organs. Mengen und Spurenelemente, vol 21. Friedrich-Schiller-Universitat, Leipzig, pp 334–340Google Scholar
  37. Dobrowolski JW, Borkowski J, Szymczyk S (1987) Laser stimulation for cummulation of selenium in tomato fruits. In: Jezowska-Trzebiatowska B, Kochel B, Slawinski J, Starek W (eds) Photon emission from biological systems. World Scientific, Singapore, pp 211–218Google Scholar
  38. Dobrowolski JW, Budak A, Bogusz B (1995) Effect of laser irradiation on pathogenic fungi in vitro. In: Proceedings of the. international biomedical optics conference, San JoseGoogle Scholar
  39. Dobrowolski JW, Wachalewski T, Smyk B, Różycki E, Barabasz W (1996) Experiments on the influence of laser light on some biological elements of the natural environment. Environ Manag Health 8(4):136–141CrossRefGoogle Scholar
  40. Dobrowolski JW, Rozanowski B, Zielinska-Loek A, Sliwka M, Gowin K, Mazur R (2004) Perspectives of application of laser biostimulation for more bioremediation of soil and wastewater. International conference on bioremediation of soil and groundwater, Politechnika Śląska, Krakow, pp. 133–148Google Scholar
  41. Dobrowolski JW, Jachimski J, Hejmanowska B, Wagner A, Boroń A, Drzewiecki W, Mikrut S, Śliwka M, Mazur R, Jakubiak M, Patuła B (2006) Interdyscyplinarna współpraca w zakresie edukacji na rzecz ochrony krajobrazu kulturowego na przykładzie Parku Narodowego Cinque Terre (Włochy). [Interdisciplinary co-operation in the area of the protection of cultural landscape, focussed on the Cinque Terre National Park (Italy)], vol 12. (2/1, Geodezja, Akademia Górniczo-Hutnicza, pp 167–182. ISSN: 1234-6608Google Scholar
  42. Dobrowolski JW, Budak A, Trojanowska D, Rymarczyk M, Macuda J (2012a) Laser stimulation of trichophyton mentagrophytes for the enhancement biodegradation of hydrocarbons. J Environ Eng Manag 11(10):1783–1788. ISSN: 1582-9596Google Scholar
  43. Dobrowolski JW, Sliwka M, Mazur R (2012b) Laser biotechnology for more efficient bioremediation, protection of aquatic ecosystems and reclamation of contaminated areas. J Chem Technol Biotechnol 87:1354–1359. ISSN: 1097-4660CrossRefGoogle Scholar
  44. El-Borai AM, Eltaych KM, Mostafa AR, El-Assar SA (2016) Biodegradation of industrial oil-polluted wastewater in Egypt by bacterial consortium immobilized in different types of carriers. Pol J Environ Stud 25(5):1901–1909. ISSN: 1230-1483CrossRefGoogle Scholar
  45. Fernando HJS, Mammarella MC, Grandoni G, Fedele P, Di Marco R, Dimitrova R, Hyde P (2012) Forecasting PM10 in metropolitan areas: efficacy of neural networks. Environ Pollut 163:62–67. https://doi.org/10.1016/j.envpol.2011.12.018 CrossRefPubMedGoogle Scholar
  46. Fischedick M, Schaeffer R, Adedoyin A, Akai M, Bruckner T, Clarke L (2011) Mitigation potential and costs. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University, Cambridge, pp 791–864CrossRefGoogle Scholar
  47. From Smart History towards common European Heritage by preservation model of Cinque Terre National Park – Italy (2005) Joint international project handbook. In: De Naeyer A (ed) EU Progr. Culture 2000: SMART HISTORY, Parco Nazionale Cinque Terre, Riomaggiore http://home.agh.edu.pl/~zfiit/publikacje_pliki/Smart%20History%20Handbook.pdf . Accessed 21 Mar 2016
  48. Gambuś F, Czech T, Wieczorek J (2013) Changes of soil reaction and consumption of lime fertilizers in Poland. 19 international conference “Reasonable use of fertilizers dedicated to calcium and liming”, at the Czech University of Life Sciences Prague. nr 19. 79–84Google Scholar
  49. Gambuś F, Wieczorek J, Czech T, Gorczyca O, Spałek I, Urbańska K, Babula J, Mierzwa-Hersztek M, Rydarowski H, Kopeć M (2014) Yield forming efect of application of composts containing polymer materials enriched in biocomponents. J. Ecol Eng 15(1):81–86. https://doi.org/10.12911/22998993.1084222 Google Scholar
  50. Gazzaz NM, Yusoff MK, Aris AZ, Juahir H, Ramli MF (2012) Artificial neural network modeling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors. Mar Pollut Bull 64:2409–2420. https://doi.org/10.1016/j.marpolbul.2012.08.005 CrossRefPubMedGoogle Scholar
  51. Gnansounou E, Dauriat A, Villegas J, Panichelli L (2009) Life cycle assessment of biofuels: energy and greenhouse gas balances. Bioresour Technol 100(21):4919–4930. https://doi.org/10.1016/j.biortech.2009.05.067 CrossRefPubMedGoogle Scholar
  52. Górecka K (1985) Propagation of cauliflower from flower buds in tissue culture. Bull Pol Acad Sci Biol Sci 33(6):27–29. ISSN: 0867-1656Google Scholar
  53. Górecka K (1992) In: Bajaj YPS (ed) Micropropagation of horseradish (Cochlearia armoracia L.). Biotechnology in agri-culture and forestry. Hightech and micropropagation III, vol 19. Springer-Verlag, Berlin, pp 58–71. ISBN: 978-3-642-76415-8Google Scholar
  54. Górecka K (1998) Obtaining of homozygous lines of head cabbage (Brassica oleracea L. var. capitata L.) with aid of anther culture. Research Institute of Vegetable Crops, Habil. Thesis 14, pp 1–71Google Scholar
  55. Górecka K, Krzyżanowka D, Górecki R, Glapś T (1993) Increasing of intensity in vitro tomato propagation with decapitation seedlings method. Material of polish symposium. Smal plants and technology in horticulture. Polish Society for Horticultural Science. Poznań University of. Life Sciences, pp 154–156 [in Polish]Google Scholar
  56. Górecka K, Krzyżanowska D, Śmiech M, Hoser-Krauze J (1997) The use of anther culture for obtaining head cabbage cv. Kamienna Głowa homozygous lines. Advances in biometrical genetics. In: Proceedings of the tenth meeting of the EUCARPIA section biometrics in plant breeding, pp 123–130Google Scholar
  57. Górecka K, Krzyżanowska D, Kiszczak W, Kowalska U (2009) Plant regeneration from carrot (Daucus carota L.) anther culture derived embryos. Acta Physiol Plant 31(6):1139–1145. ISSN: 1861-1664CrossRefGoogle Scholar
  58. Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497. https://doi.org/10.1038/204497a0 CrossRefGoogle Scholar
  59. Hawkins DH, Abrahamse H (2006) The role of laser fluence in cell viability, proliferation, and membrane integrity of wounded human skin fibroblasts following helium-neon laser irradiation. Lasers Surg Med 38:74–83. https://doi.org/10.1002/lsm.20271 CrossRefPubMedGoogle Scholar
  60. Hawkins D, Abrahamse H (2005) Laboratory methods for evaluating the effect of low level laser therapy (L LLT) In Hu E. (2004) Zinc deficiency, DNA damage and cancer risk. J Nutr Biochem 15:572–578. https://doi.org/10.1016/j.jnutbio.2004.07.005
  61. Junhui He (2016) Nanomaterials in energy and environmental applications. Pan Stanford Publications, 548 p. ISBN-10: 9814463787Google Scholar
  62. Horsek Z, Hrebicek J (2014) Biodegradable waste management in the Czech Republic. A proposal for improvement. Pol J Environ Stud 23(6):2019–2025. ISSN: 1230-1483Google Scholar
  63. Hu X, Weng Q (2009) Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural networks. Remote Sens Environ 113:2089–2102. https://doi.org/10.1016/j.rse.2009.05.014 CrossRefGoogle Scholar
  64. Hu Y-C (2010) Pattern classification by multi-layer perceptron using fuzzy integral-based activation function. Appl Soft Comput 10:813–819. https://doi.org/10.1016/j.asoc.2009.09.011 CrossRefGoogle Scholar
  65. Inn-Sil K, Tae-Soo C, Hyun-Min K, Nam-Il C, Jong-Sang K, Sung Cheol K, Sung-Kyu L, Yoo-Shin K (2002) Pattern recognition of the movement tracks of medaka (Oryzias latipes) in response to sub-lethal treatments of an insecticide by using artificial neural networks. Environ Pollut 120:671–668. https://doi.org/10.1016/S0269-7491(02)00183-5 CrossRefGoogle Scholar
  66. Ivanov V (2016) Environmental microbiology for engineers. CRC Press. ISBN: 9781420092349 – CAT# 92340Google Scholar
  67. Jakubiak M, Sliwka M (2009) Research on effects of laser light stimulation on selected strains of energetic willow. Pol J Environ Stud 18:123–127. ISSN: 1230-1483Google Scholar
  68. Jia J, Zhao S, Hu L, Wang Y, Yao L, Liu Y, Yuan Z (2016) Removal efficiency and the mineralization mechanism during enhanced bioventing remediation of oil-contaminated soils. Pol J Environ Stud 25(5):1955–1963. ISSN: 1230-1483CrossRefGoogle Scholar
  69. Junginger M, de Visser E, Hjort-Gregersen K, Koornneef J, Raven R, Faaij A (2006) Technological learning in bioenergy systems. Energ Policy 34(18):4024–4041. https://doi.org/10.1016/j.enpol.2005.09.012 CrossRefGoogle Scholar
  70. Karachevtsev VA (ed) (2016) Nanobiophysics. Fundamentals and application. Pan Stanford Publishing PTE. Ltd., Singapore, 417 p. ISBN: 978-981-4613-96-5Google Scholar
  71. Kozieł W, Włodarczyk T (2011) Glony – produkcja biomasy. Acta Agrophysica 17:105–116. http://www.old.actaagrophysica.org/pl/polrocznik.html?stan=detail&paper=1407&vol=17&numer=1 Google Scholar
  72. Krzyżanowska D, Górecka K (2004) Characteristic of Brussels sprouts plants obtained by anther culture. Veg Crop Res Bull 60:25–31. PL ISSN 1506-9427Google Scholar
  73. Kudłek J, Pępkowska A, Walasz K, Weiner J (2005) Koncepcja ochrony różnorodności biotycznej miasta Krakowa. Instytut Nauk o Środowisku UJ, Kraków. 169 p. http://www.eko.uj.edu.pl/przyrodakrakowa/download/koncepcja.pdf
  74. Kuwahara SS, Cuello JL, Myhre G, Pau S (2011) Growth of green algae Chlamydomonas reinhardtii under red and blue lasers. Opt Lasers Eng 49:434–438. https://doi.org/10.1016/j.optlaseng.2010.11.015 CrossRefGoogle Scholar
  75. Kuźniar T (2012) Use of the entomopathogenic fungi in crop plant protection against insects. Doctoral dissertation, Faculty of Agriculture and Economics, University of Agriculture in KrakowGoogle Scholar
  76. Larson ED (2006) A review of life-cycle analysis studies on liquid biofuel systems for the transport sector. Energy Sustain Dev 10(2):109–126. ISSN: 0973-0826CrossRefGoogle Scholar
  77. Lee SY, Nielsen J, Stephanopoulos G (2016) Advanced biotechnology. In: Willadsen J (ed) Fundamental bioengineering, vol 1. Willey – VCH, WeinheimGoogle Scholar
  78. Llanos J, Rodrigo MA, Cañizares P, Popa Furtuna R, Curteanu S (2013) Neuro-evolutionary modelling of the electrodeposition stage of a polymer-supported ultrafiltratione-electrodeposition process. for the recovery of heavy metals. Environ Model Softw 42:133–142. ISBN: 978-3-527-33674-6CrossRefGoogle Scholar
  79. Long TB, Blok V, Coninx I (2016) Barriers to the adoption and diffusion of technological innovations for climate-smart agriculture in Europe: evidence from the Netherlands, France, Switzerland and Italy. J Clean Prod 112:9–21. https://doi.org/10.1016/j.jclepro.2015.06.044 CrossRefGoogle Scholar
  80. Maibeche Y, Moali A, Yahi N, Menard N (2015) Is diet flexibility an adaptive life trait for relictual and peri-urban populations of the endangered primate Macaca sylvanus? PLoS One, Genet Genomic Res 10:e0118596. https://doi.org/10.1371/journal.pone.0118596 CrossRefGoogle Scholar
  81. Mandenius CF (2016) Bioreactors. Design, operation and novel. Willey VCH. ISBN: 978-3-527-33768-2Google Scholar
  82. Maoyun H, Xiao B, Shiming L, Zhiquan H, Xianjun G, Siyi L, Fan Y (2010) Syngas production from pyrolysis of municipal solid waste (MSW) with dolomite as downstream catalysts. J Anal Appl Pyrolysis 87:181–187. ISSN: 0165-2370CrossRefGoogle Scholar
  83. McQuarrie JP, Boltz JP (2011) Moving bed biofilm reactor technology: process applications, design, and performance. Water Environ Res 83(6):560–575. https://doi.org/10.2175/106143010X12851009156286 CrossRefPubMedGoogle Scholar
  84. Menchetti M, Mori E (2014) Worldwide impact of alien parrots (Aves Psittaciformes) on native biodiversity and environment: a review. Ethol Ecol Evol 26(2-3):172–194. https://doi.org/10.1080/03949370.2014.905981 CrossRefGoogle Scholar
  85. Milell L, Martelli G, Salava J, Fernandez E, Ovesná J, Greco I (2011) Total phenolic content, RAPDs, AFLPs and morphological traits for the analysis of variability in Smallanthus sonchifolius. Genet Resour Crop Evol 58(4):545–551. https://doi.org/10.1007/s10722-010-9597-x CrossRefGoogle Scholar
  86. Moretti M, Bontadina F, Bauer N, Duelli P, Della Bruna P, Gloor S, Hunziker M, Obrist M, Wagner S (2012) BiodiverCity – ecological and social value of urban nature: tools to identify, maintain and improve biodiversity and its acceptance in urban areas. Nat Res Program 54 project BiodiverCity, on-line: http://www.biodivercity.ch/. Accessed 28 Mar 2016
  87. Obernberger I, Thek G, Reiter D (2008) Economic evaluation of decentralized CHP applications based on biomass combustion and biomass gasification. BIOS Bioenergiesysteme GmbH, Graz. Online: http://bios-bioenergy.at/uploads/media/Paper-Obernberger-Cost-assessment-CHPBM-comustion-gasification-2008-05-30.pdf. Accessed 22 Nov 2016
  88. Orlewicz-Musiał M, Wagner A (2012) Rola terenów zieleni w zrównoważonym rozwoju miasta na przykładzie Błoń Krakowskich i Parku im. Dr Henryka Jordana w Krakowie. In: Kosmala M (ed) Zieleń a klimat społeczny miasta, Toruń, pp 147–158. ISBN: 978-83-931293-8-6Google Scholar
  89. Orlewicz-Musiał M, Wagner A (2014) Przeobrażenia terenów zieleni miejskiej w związku z rozwojem infrastruktury sportowo-rekreacyjnej na przykładzie dzielnic Nowej Huty w Krakowie. In: M Kosmala (ed) Kierunki zmian terenów zieleni w miastach, Toruń, pp 241–252. ISBN: 9788393574049Google Scholar
  90. Polish Standards, PN-R-04013:1988 – Chemico-agricultural analysis of plants – determination of air-dry and dry matter (1988)Google Scholar
  91. Rada EC (2016) Biological treatment of solid waste. Enhancing sustainability. Apple Academic Press, CRC Press. ISBN: 978-1-77188-279-8. URL: https://www.crcpress.com/Biological-Treatment-of-Solid-Waste-Enhancing-Sustainability/Rada/p/book/9781771882798
  92. Rogulska M, Grzybek A, Szlachta J, Tys J, Krasuska E, Biernat K, Bajdor K (2011) Powiązanie rolnictwa i energetyki w kontekście realizacji celów gospodarki niskoemisyjnej w Polsce. Pol J Agron 7:92–101. ISSN: 1230-1483, article-9caad312-de6b-427a-809d-4fd85508fe8fGoogle Scholar
  93. Rybiński W, Garczyński S (2004) Influence of laser light on leaf area and parameters of photosynthetic activity in DH lines of spring barley (Hordeum vulgare L.) Int. Agrophysics 18:261–267. www.Jpaan.lublin.pl/Int-agrophysics
  94. Sadrzadeh M, Mohammadi T, Ivakpour J, Kasiri N (2008) Separation of lead ions from wastewater using electrodialysis: comparing mathematical and neural network modeling. Chem Eng J 144:431–441. https://doi.org/10.1016/j.cej.2008.02.023 CrossRefGoogle Scholar
  95. Sahayaraj K, Namasivayam SKR (2008) Mass production of entomopathogenic fungi using agricultural products and by products. Afr J Biotechnol 7(12):1907–1910. ISSN 1684–5315CrossRefGoogle Scholar
  96. Sanchez-Murillo RI, Torre-Martinez M, Aguirre-Linares J, Herrera-Estrella I (2004) Light-regulated asexual reproduction in Paecilomyces fumosoroseus. Microbiology 150:311–319. https://doi.org/10.1099/mic.0.26717-0 CrossRefPubMedGoogle Scholar
  97. Segui-Simarro JM (2016) Androgenesis in Solanaceae. Methods Mol Biol 1359:209–244. https://doi.org/10.1007/978-1-4939-3061-6_9 CrossRefPubMedGoogle Scholar
  98. Shen Y, Yoshikawa K (2013) Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis – a review. J Renew Sustain Energy Rev 21:371–392. https://doi.org/10.1016/j.rser.2012.12.062 CrossRefGoogle Scholar
  99. Shi WB, Feng MG (2004) Lethal effect of Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces fumosoroseus on the eggs of Tetranychus cinnabarinus (Acari: Tetranychidae) with a description of a mite egg bioassay system. Biol Control 30:165–173. https://doi.org/10.1016/j.biocontrol.2004.01.017 CrossRefGoogle Scholar
  100. Singh A, Imtiyaz M, Isaac RK, Denis DM (2012) Comparison of soil and water assessment tool (SWAT) and multilayer perceptron (MLP) artificial neural network for predicting sediment yield in the Nagwa agricultural watershed in Jharkhand, India. Agric Water Manag 104:113–120. https://doi.org/10.1016/j.agwat.2011.12.005 CrossRefGoogle Scholar
  101. Tokarska-Guzik B et al (2012) The plants of the alien origin in Poland, focus on invasive species Rośliny obcego pochodzenia w Polsce ze szczególnym uwzględnieniem gatunków inwazyjnych. Generalna Dyrekcja Ochrony Środowiska, Warszawa. ISBN: 978-83-62940-34-9Google Scholar
  102. Tursunov O (2014) A comparison of catalysts zeolite and calcined dolomite for gas production from pyrlolysis of municipal solid waste (MSW). Elsevier Appl Sci Sci Direct J Ecol Eng 69:237–243. https://doi.org/10.1016/j.ecoleng.2014.04.004 Google Scholar
  103. Tursunov O, Dobrowolski JW (2015) A brief review of application of laser biotechnology as an efficient mechanism for the increase of biomass for bio-energy production via clean thermo-technologies. Am J Renew Sustain Energy 1(2):66–71Google Scholar
  104. Tursunov O, Isa K, Ong S (2011) Review paper of catalyst (dolomite) analysis for MSW pyrolysis (gasification). International Postgraduate Conference on Engineering (IPCE), PerlisGoogle Scholar
  105. Tursunov O, Dobrowolski J, Klima K, Kordon B, Ryczkowski J, Tylko G, Czerski G (2015a) The influence of laser biotechnology on energetic value and chemical parameters of rose multiflora biomass and role of catalysts for bio-energy production from biomass: case study in Krakow-Poland. World. J Environ Eng 3(2):58–66. https://doi.org/10.12691/wjee-3-2-5 Google Scholar
  106. Tursunov O, Dobrowolski JW, Nowak W (2015b) Catalytic energy production from municipal solid waste biomass: case study in Perlis, Malaysia. World J Environ Eng 3(1):7–14. https://doi.org/10.12691/wjee-3-1-2 CrossRefGoogle Scholar
  107. Uchwała nr XC/1202/10 XC/1202/10 Rady Miasta Krakowa z dnia 13 stycznia 2010 r. w sprawie ustanowienia użytku ekologicznego ‘Staw Dąbski’ [Resolution no. XC/1202/10 of the City Council of Krakow of 13th January 2010 on establishing the ecologically useful area ‘The Pond of Dąbie’] [Online]. http://www.infor.pl/akt-prawny/U80.2010.045.0000302,uchwala-nr-xc120210-rady-miasta-krakowa-w-sprawie-ustanowieniauzytku-ekologicznego-staw-dabski.html
  108. Uchwała nr XXXI/405/07 Rady Miasta Krakowa z dnia 19 grudnia 2007 r. w sprawie ustanowienia użytku ekologicznego ‘Staw przy Kaczeńcowej’ [Resolution no. XXXI/405/07 of the City Council of Krakow of 19th December 2007 on establishing the ecologically useful area ‘The Pond of the Kaczeńcowa Street’] [Online]. https://www.bip.krakow.pl/?dok_id=167&sub_dok_id=167&sub=uchwala&query=id%3D17225%26amp%3Btyp%3Du
  109. Van Dijk M, Meijerink GW (2014) A review of global food security scenario and assessment studies, Results, gaps and research priorities. Global Food Secur 3:227–238. ISSN: 2211-9124CrossRefGoogle Scholar
  110. Vohora SD, Dobrowolski JW (eds) (1990) New horizon of trace elements and health. Hamdard University, New DelhiGoogle Scholar
  111. Wagner A (2007) Nature-based tourism in anthropogenic landscape: focus on water bodies in the Krakow area. In: Environmental protection into the future, eds. January Bień, Wojciech Nowak, Częstochowa, Wydawnictwo Politechniki Częstochowskiej, pp 462–463. ISBN: 978-83-7193-340-0Google Scholar
  112. Wagner A (2012) Management of the industrial area of Nowa Huta (Kraków, Poland), focus on water bodies. Pol J Environ Stud 21(5A):435–439. ISSN: 1230-1483Google Scholar
  113. Wagner A, Hruševar D (2015) Contribution to the knowledge of plant diversity in the Malopolska region. Int J Adv Life Sci 7(3, 4):164–165. ISSN:1942-2660Google Scholar
  114. Wagner A, Orlewicz-Musiał M (2014) Functions and dysfunctions of tourism and recreation in and how they influence aquatic environments. Pol J Environ Stud 23(3):1045–1050. ISSN: 1230-1483Google Scholar
  115. Wagner A, Orlewicz-Musiał M (2011) Zbiorniki rekreacyjne na terenie Krakowa na przestrzeni dziejów. [Water bodies in Krakow over the history]. In: Kosmala M (ed) Miasta wracją nad wodę [Cities are coming back towards water]. PZIiTS, Toruń, pp 197–206. 978-83-931293-5-5Google Scholar
  116. Wieczorek J., Czech T, Koncewicz-Baran M., (2016) Assessment of the value of fertilizers prepared on the basis of dolomite from “Jozefka” mine – research report. Department of Agricultural and Environmental Chemistry. University of Agriculture in Krakow, pp 1–56Google Scholar
  117. Zabochnicka-Świątek M (2010) Algae – feedstock of the future. Arch Combust 30:225–236Google Scholar
  118. Zabochnicka-Świątek M (2012) Effect of air and CO2 supply on growth of microalgae Chlorella vulgaris. In: Proceedings of the 37th international technical conference on clean coal and fuel systems, pp 183–189. 03–07.06.2012, Clearwater, FloridaGoogle Scholar
  119. Zabochnicka-Świątek M (2013) Utilization of Chlorella vulgaris and sediments after N-NH4 removal containing clinoptilolite for sorption of heavy metals from wastewater. Rocz Ochr Sr 15:324–347Google Scholar
  120. Zabochnicka-Świątek M, Gyliene O, Cederkvist K, Holm PE (2012) Adsorption processes. In: Best practice guide on metals removal from drinking water by treatment. IWA Publishing, London, pp 61–69. ISBN: 9781843393849Google Scholar
  121. Zabochnicka-Świątek M, Malińska K, Krzywonos M (2014) Removal of biogens from synthetic wastewater by microalgae. Environ Prot Eng 40:87–104. https://doi.org/10.5277/epe140207 Google Scholar
  122. Zhang N, Wang M, Wang N (2002) Precision agriculture/a worldwide overview. Comput Electron Agric 36:113–132. https://doi.org/10.1016/S0168-1699(02)00096-0 CrossRefGoogle Scholar
  123. Zimmermann G (2007) The entomopathogenic fungi Isaria farinosa (formerly Paecilomyces farinosus) and the Isaria fumosorosea species complex (formerly Paecilomyces fumosoroseus): biology, ecology and use in biological control. Biocontrol Sci Tech 18(9):865–901CrossRefGoogle Scholar
  124. Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (eds) (2014) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University, Cambridge, pp 209–332Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Jan W. Dobrowolski
    • 1
  • Dawid Bedla
    • 2
  • Tomasz Czech
    • 2
  • Florian Gambuś
    • 2
  • Krystyna Górecka
    • 3
  • Waldemar Kiszczak
    • 3
  • Tomasz Kuźniar
    • 2
  • Robert Mazur
    • 1
  • Agata Nowak
    • 4
  • Malgorzata Śliwka
    • 1
  • Obid Tursunov
    • 1
  • Aleksandra Wagner
    • 1
  • Jerzy Wieczorek
    • 2
  • Magdalena Zabochnicka-Świątek
    • 5
  1. 1.AGH University of Science and TechnologyKrakówPoland
  2. 2.University of Agriculture in KrakowKrakowPoland
  3. 3.Research Institute of Horticulture in SkierniewiceSkierniewicePoland
  4. 4.Poznań University of Life SciencesPoznańPoland
  5. 5.Institute of Environmental EngineeringCzestochowa University of TechnologyCzęstochowaPoland

Personalised recommendations