Advertisement

Measuring the Mechanical Properties of Single Cells by AFM

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

AFM is a powerful tool for quantifying single-cell mechanics. The principle and methods of measuring cellular Young’s modulus by AFM was firstly presented. Then spherical probes were fabricated by gluing individual spheres to the AFM probe based on optical-guided AFM micromanipulations. With the use of spherical probes, the Young's modulus of human erythrocytes and three types of human suspended cancerous cells with different invasiveness was measured, showing the close links between cell elasticity and cell invasiveness capabilities.

References

  1. 1.
    Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumor progression. Nat Rev Cancer 9:108–122CrossRefGoogle Scholar
  2. 2.
    Discher DE, Janmey P, Wang Y (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143ADSCrossRefGoogle Scholar
  3. 3.
    Hoffman BD, Grashoff C, Schwartz MA (2011) Dynamic molecular processes mediate cellular mechanotransduction. Nature 475:316–323CrossRefGoogle Scholar
  4. 4.
    Di Carlo D (2012) A mechanical biomarker of cell state in medicine. J Lab Autom 17:32–42CrossRefGoogle Scholar
  5. 5.
    Lee GYH, Lim CT (2007) Biomechanics approaches to studying human diseases. Trends Biotechnol 25:11–118CrossRefGoogle Scholar
  6. 6.
    Cross SE, Jin YS, Rao JY et al (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2:780–783ADSCrossRefGoogle Scholar
  7. 7.
    Xu W, Mezencev R, Kim B et al (2012) Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS ONE 7:e46609ADSCrossRefGoogle Scholar
  8. 8.
    Li M, Liu L, Xi N et al (2012) Atomic force microscopy imaging and mechanical properties measurement of red blood cells and aggressive cancer cells. Sci China Life Sci 55:968–973CrossRefGoogle Scholar
  9. 9.
    Suresh S (2007) Elastic clues in cancer detection. Nat Nanotechnol 2:748–749ADSCrossRefGoogle Scholar
  10. 10.
    Reich A, Meurer M, Eckes B et al (2009) Surface morphology and mechanical properties of fibroblasts from scleroderma patients. J Cell Mol Med 13:1644–1652CrossRefGoogle Scholar
  11. 11.
    Plodinec M, Loparic M, Monnier C et al (2012) The nanomechanical signature of breast cancer. Nat Nanotechnol 7:757–765ADSCrossRefGoogle Scholar
  12. 12.
    Li M, Liu L, Xi N et al (2014) Research progress in quantifying the mechanical properties of single living cells using atomic force microscopy. Chin Sci Bull 59:4020–4029CrossRefGoogle Scholar
  13. 13.
    Tao NJ, Lindsay SM, Lees S (1992) Measuring the microelastic properties of biological material. Biophys J 63:1165–1169CrossRefGoogle Scholar
  14. 14.
    Radmacher M, Monika F, Hansma PK (1995) Imaging soft samples with the atomic force microscope: gelatin in water and propanol. Biophys J 69:264–270CrossRefGoogle Scholar
  15. 15.
    Maivald P, Butt HJ, Gould SAC et al (1991) Using force modulation to image surface elasticities with the atomic force microscope. Nanotechnology 2:103–106ADSCrossRefGoogle Scholar
  16. 16.
    Hoh JH, Schoenenberger CA (1994) Surface morphology and mechanical properties of MDCK monolayers by atomic force microsocopy. J Cell Sci 107:1105–1114Google Scholar
  17. 17.
    Radmacher M, Fritz M, Kacher CM et al (1996) Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J 79:556–567CrossRefGoogle Scholar
  18. 18.
    Rotsch C, Radmacher M (2000) Drug-induced changes of cytoskeleton structure and mechanics in fibroblast: an atomic force microscopy study. Biophys J 78:520–535CrossRefGoogle Scholar
  19. 19.
    Cuerrier CM, Gagner A, Lebel R et al (2009) Effect of thrombin and bradykinin on endothelial cell mechanical properties monitored through membrane deformation. J Mol Recognit 22:389–396CrossRefGoogle Scholar
  20. 20.
    Pelling AE, Veraitch FS, Chu CPK et al (2009) Mechanical dynamics of single cells during early apoptosis. Cell Motil Cytoskeleton 66:409–422CrossRefGoogle Scholar
  21. 21.
    Hu M, Wang J, Zhao H et al (2009) Nanostructure and nanomechanics analysis of lymphocyte using AFM: from resting, activated to apoptosis. J Biomech 42:1513–1519CrossRefGoogle Scholar
  22. 22.
    Liu Y, Feng J, Shi L et al (2012) In situ mechanical analysis of cardiomyocytes at nano scales. Nanoscale 4:99–102ADSCrossRefGoogle Scholar
  23. 23.
    Mahaffy RE, Shih CK, MacKintosh FC et al (2000) Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys Rev Lett 85:880–883ADSCrossRefGoogle Scholar
  24. 24.
    Berdyyeva TK, Woodworth CD, Sokolov I (2005) Human epithelial cells increase their rigidity with ageing in vitro: direct measurements. Phys Med Biol 50:81–92CrossRefGoogle Scholar
  25. 25.
    Leporatti S, Gerth A, Kohler G et al (2006) Elasticity and adhesion of resting and lipopolysaccharide-stimulated macrophages. FEBS Lett 580:450–454CrossRefGoogle Scholar
  26. 26.
    Oberleithner H, Callies C, Kusche-Vihrog K et al (2009) Potassium softens vascular endothelium and increases nitric oxide release. Proc Natl Acad Sci USA 106:2829–2834ADSCrossRefGoogle Scholar
  27. 27.
    Lulevich V, Yang H, Isseroff RR et al (2010) Single cell mechanics of keratinocyte cells. Ultramicroscopy 110:1435–1442CrossRefGoogle Scholar
  28. 28.
    Nikkhah M, Strobl JS, Schmelz EM et al (2011) Evaluation of the influence of growth medium composition on cell elasticity. J Biomech 44:762–766CrossRefGoogle Scholar
  29. 29.
    Gavara N (2017) A beginner’s guide to atomic force microscopy probing for cell mechanics. Microsc Res Tech 80:75–84CrossRefGoogle Scholar
  30. 30.
    Li M, Liu L, Xi N et al (2013) Mapping CD20 molecules on the lymphoma cell surface using atomic force microscopy. Chin Sci Bull 58:1516–1519CrossRefGoogle Scholar
  31. 31.
    Radmacher M (2007) Studying the mechanics of cellular processes by atomic force microscopy. Methods Cell Biol 83:347–372CrossRefGoogle Scholar
  32. 32.
    Kasas S, Longo G, Dietler G (2013) Mechanical properties of biological specimens explored by atomic force microscopy. J Phys D Appl Phys 46:133001ADSCrossRefGoogle Scholar
  33. 33.
    Butt HJ, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59:1–152ADSCrossRefGoogle Scholar
  34. 34.
    Li M, Dang D, Liu L et al (2017) Atomic force microscopy in characterizing cell mechanics for biomedical applications: a review. IEEE Trans Nanobiosci 16:523–540Google Scholar
  35. 35.
    Kuznetsova TG, Starodubtseva MN, Yegorenkov NI et al (2007) Atomic force microscopy probing of cell elasticity. Micron 38:824–833CrossRefGoogle Scholar
  36. 36.
    Gavara N, Chadwick RS (2012) Determination of the elastic moduli of thin samples and adherent cells using conical atomic force microscopy tips. Nat Nanotechnol 7:733–736ADSCrossRefGoogle Scholar
  37. 37.
    Bruckner BR, Noding H, Janshoff A (2017) Viscoelastic properties of confluent MDCK II cells obtained from force cycle experiments. Biophys J 112:724–735CrossRefGoogle Scholar
  38. 38.
    Radmacher M (2002) Measuring the elastic properties of living cells by the atomic force microscope. Methods Cell Biol 68:67–90CrossRefGoogle Scholar
  39. 39.
    Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463:485–492ADSCrossRefGoogle Scholar
  40. 40.
    Lekka M (2016) Discrimination between normal and cancerous cells using AFM. Bionanoscience 6:65–80CrossRefGoogle Scholar
  41. 41.
    Li M, Liu L, Xiao X et al (2016) Effects of methotrexate on the viscoelastic properties of single cells probed by atomic force microscopy. J Biol Phys 42:551–569CrossRefGoogle Scholar
  42. 42.
    Merkel R, Nassoy P, Leung A et al (1999) Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397:50–53ADSCrossRefGoogle Scholar
  43. 43.
    Li M, Liu L, Xi N et al (2011) Imaging and measuring the rituximab-induced changes of mechanical properties in B-lymphoma cells using atomic force microscopy. Biochem Biophys Res Commun 404:689–694CrossRefGoogle Scholar
  44. 44.
    Li M, Liu L, Xi N et al (2012) Drug-induced changes of topography and elasticity in living B lymphoma cells based on atomic force microscopy. Acta Phys Chim Sin 28:1502–1508Google Scholar
  45. 45.
    Vargas-Pinto R, Gong H, Vahabikashi A et al (2013) The effect of endothelial cell cortex on atomic force microscopy measurements. Biophys J 105:300–309CrossRefGoogle Scholar
  46. 46.
    Dave SS, Fu K, Wright GW et al (2006) Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med 354:2431–2442CrossRefGoogle Scholar
  47. 47.
    Diamandidou E, Cohen PR, Kurzrock R (1996) Mycosis fungoides and sezary syndrome. Blood 88:2385–2409Google Scholar
  48. 48.
    Deininger MWN, Goldman JM, Melo JV (2000) The molecular biology of chronic myeloid leukemia. Blood 96:3343–3356Google Scholar
  49. 49.
    Kiberstis PA (2016) Metastasis: an evolving story. Science 352:162–163ADSCrossRefGoogle Scholar
  50. 50.
    Jin H, Pi J, Huang X et al (2012) BMP2 promotes migration and invasion of breast cancer cells via cytoskeletal reorganization and adhesion decrease: an AFM investigation. Appl Microbiol Biotechnol 93:1715–1723CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Robotics, Shenyang Institute of AutomationChinese Academy of SciencesShenyangChina

Personalised recommendations