Advertisement

Adaptation of Lichens to Extreme Conditions

  • Richard A. ArmstrongEmail author
Chapter

Abstract

Lichens exhibit the classic features of stress-tolerant organisms, viz. slow growth rates, considerable longevity, low demand for nutrients, and the presence of specific adaptations to survive in the most inhospitable environments on Earth. The ability of lichens to tolerate the extremes posed by deserts, polar regions, and chemically rich environments involves both morphological and physiological adaptation and changes in ecological behaviour so that species adapt to relatively protected niches within an extreme environment. This chapter discusses those aspects of the lichen symbiosis relevant to survival in extreme conditions and then describes the adaptation of lichens to (1) wet forests, (2) deserts, (3) the Arctic, (4) alpine regions, (5) Antarctica, (6) chemically rich environments, and (7) extraterrestrial environments such as outer space and Mars. It is evident that the lichen symbiosis is more tolerant to hostile conditions than its symbionts, morphological and physiological adaptations are intimately associated, and convergent evolution has resulted in similar changes in different environments.

Keywords

Lichen Extreme environments Adaptation Arctic/alpine regions Antarctica Deserts Chemically rich environments Extraterrestrial environment 

Abbreviations

ABC transporter

ATP-binding casette transporter

EBF

European BIOPAN Facility

GSH

Glutathione

GST

Glutathione S-transferase

ISS

International Space Station

nPS

Net photosynthesis

ROS

Reactive oxygen species

S/V

Surface/volume ratio

SOD

Superoxide dismutase

THEMIS

Thermal Emission Imaging System

UV

Ultraviolet

References

  1. Ahmadjian V (1970) Adaptation of Antarctic terrestrial plants. In: Holdgate MW (ed) Antarctic ecology, vol 2. Academic, New York, pp 801–811Google Scholar
  2. Armstrong RA (1974) The descriptive ecology of saxicolous lichens in area of South Merionethshire, Wales. J Ecol 62:33–45. https://doi.org/10.2307/2258878 CrossRefGoogle Scholar
  3. Armstrong RA (1976) The influence of the frequency of wetting and drying on the radial growth of three saxicolous lichens in the field. New Phytol 77:719–724. https://doi.org/10.1111/j.1469-8137.1976.tb-04666.x CrossRefGoogle Scholar
  4. Armstrong RA (1981) Field experiments on the dispersal, establishment and colonization of lichens on a slate rock surface. Environ Exp Bot 21:116–120CrossRefGoogle Scholar
  5. Armstrong RA (1984) The influence of bird droppings and uric acid on the growth of five species of saxicolous lichens. Environ Exp Bot 4:95–99. https://doi.org/10.1016/0098-8472(84)90065-0 CrossRefGoogle Scholar
  6. Armstrong RA (1990a) Dispersal, establishment, and survival of soredia and fragments of the lichen Hypogymnia physodes (L.) New Phytol 114:239–245CrossRefGoogle Scholar
  7. Armstrong RA (1990b) The influence of calcium and magnesium on the growth of the lichens Xanthoria parietina and Parmelia saxatilis. Environ Exp Bot 30:51–57. https://doi.org/10.1016/0098-8472(90)90008-R CrossRefGoogle Scholar
  8. Armstrong RA (1991) The influence of climate on the dispersal of lichen soredia. Environ Exp Bot 31:239–245CrossRefGoogle Scholar
  9. Armstrong RA (2002) The effect of rock surface aspect on growth, size structure, and competition in the lichen Rhizocarpon geographicum. Environ Exp Bot 48:187–194. https://doi.org/10.1016/S00098-8472(02)00040-0 CrossRefGoogle Scholar
  10. Armstrong RA (2004) Could lichens live on Mars? Microbiologist 4:30–33Google Scholar
  11. Armstrong RA (2005) Radial growth of Rhizocarpon section Rhizocarpon lichen thalli over six years at Snoqualmie pass in the Cascade range, Washington state. Arct Antarct Alp Res 37:411–415.  https://doi.org/10.1657/1523-0430(2005)037[0411:RGORSR]:RGORSRJ2.0.CO;2 CrossRefGoogle Scholar
  12. Armstrong RA (2013) Development of areolae and growth of the peripheral prothallus in the crustose lichen Rhizocarpon geographicum: an image analysis study. Symbiosis 60:7–15. https://doi.org/10.1007/s13199-013-0234-2 CrossRefGoogle Scholar
  13. Armstrong RA (2015) The influence of environmental factors on the growth of lichens in the field. In: Upreti DK, Divakar PK, Shukla V, Bajpal R (eds) Recent advances in lichenology. Springer International Publishing. AG, New Delhi, pp 1–18Google Scholar
  14. Armstrong RA, Bradwell T (2010) Growth of crustose lichens: a review. Geografiska Ann Series A Phys Geogr 92A:3–17CrossRefGoogle Scholar
  15. Armstrong RA, Bradwell T (2011) Growth of foliose lichens: a review. Symbiosis 53:1–16. https://doi.org/10.1007/s13199-011-0108-4 CrossRefGoogle Scholar
  16. Armstrong RA, Smith SN (1987) Development and growth of the lichen Rhizocarpon geographicum. Symbiosis 3:287–300Google Scholar
  17. Armstrong RA, Smith SN (2009) Carbohydrates in the hypothallus and areolae of the crustose lichen Rhizocarpon geographicum (L.) DC. Symbiosis 49:95–100CrossRefGoogle Scholar
  18. Armstrong RA, Welch AR (2007) Competition in lichen communities. Symbiosis 43:1–12Google Scholar
  19. Aubert S, Juge C, Boisson AM, Gout E, Bligny R (2007) Metabolic processes sustaining the reviviscence of lichen Xanthoria elegans (Link) in high mountain environments. Planta 226:1287–1297. https://doi.org/10.1007/s00425-007-0563-6 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6:109–124PubMedPubMedCentralCrossRefGoogle Scholar
  21. Awasthi DD, Agrawal MR (1970) An enumeration of lichens from the tropical and subtropical regions of Darjeeling District, India. J Indian Bot Soc 69:122Google Scholar
  22. Bailey RH (1976) Ecological aspects of dispersal and establishment in lichens. In: Brown DH, Bailey RH, Hawksworth DL (eds) Progress and problems in lichenology. Academic, London, pp 215–247Google Scholar
  23. Baniya CB, Solhoy T, Gauslaa Y, Palmer MW (2010) The elevation gradient of lichen species richness in Nepal. Lichenologist 42:83–96. https://doi.org/10.1017/S0024282909008627 CrossRefGoogle Scholar
  24. Bartak M, Hajek J, Vrabilkova H, Dubova J (2004) High-light stress and photoprotection in Umbilicaria antarctica monitored by chlorophyll fluorescence imaging and changes in zeaxanthin and glutathione. Plant Biol 6:333–341. https://doi.org/10.1055/s-2004-820877 PubMedCrossRefGoogle Scholar
  25. Beckett RP (1996) Some aspects of the water relations of the coastal lichen Xanthoria parietina (L.) Th. Fr. Acta Physiol Plant 18:229–234Google Scholar
  26. Beschel RE (1961) Dating rock surfaces by lichen growth and its application to the glaciology and physiography (lichenometry). In: Raasch GO (ed) Geology of the Arctic. University of Toronto Press, Toronto, pp 1044–1062Google Scholar
  27. Billings WD (1973) Arctic and alpine vegetation: similarities and susceptibility to disturbance. Bioscience 23:697–704. https://doi.org/10.2307/1296827 CrossRefGoogle Scholar
  28. Billings WD, Mooney HA (1968) The ecology of arctic and alpine plants. Biol Rev 43:481–529. https://doi.org/10.1111/j.1469-185X.1968.tb00968x CrossRefGoogle Scholar
  29. Bjerke JW, Lerfall K, Elvebakk A (2002) Effects of ultraviolet radiation and PAR on the content of usnic and divaricatic acids in two arctic-alpine lichens. Photochem Photobiol Sci 1:678–685. https://doi.org/10.1039/b203399b PubMedCrossRefGoogle Scholar
  30. Bjerke JW, Bokhorst S, Zielke M, Callaghan TV, Bowles FW, Phoenix GK (2011) Contrasting sensitivity to extreme winter warming events of dominant sub-Arctic heathland bryophyte and lichen species. J Ecol 99:1481–1488. https://doi.org/10.1111/j.1365-2745.2011.01859.x CrossRefGoogle Scholar
  31. Bliss LC (1956) A comparison of plane development in microenvironments of Arctic and Alpine tundras. Ecol Monogr 26:303–337CrossRefGoogle Scholar
  32. Bliss LC (1962) Adaptations of arctic and alpine plants to environmental conditions. Arctic 15:117–144CrossRefGoogle Scholar
  33. Brandt A, de Vera JP, Onofri S, Ott S (2015) Viability of the lichen Xanthoria elegans and its symbionts after 18 months of space exposure and simulated Mars conditions on the ISS. Int J Astrobiol 14:411–425. https://doi.org/10.1017/S1473550414000214 CrossRefGoogle Scholar
  34. Brandt A, Posthoff E, de Vera JP, Onofri S, Ott S (2016) Characterisation of growth and ultrastructural effects of the Xanthoria elegans photobiont after 1.5 years of space exposure on the International Space Station. Orig Life Evol Biosph 46:311–321. https://doi.org/10.1007/s11084-015-9470-1 PubMedCrossRefGoogle Scholar
  35. Broady PA (1986) In: Pickard J (ed) Ecology and taxonomy of the terrestrial algae of the Vestfold Hills. Antarctic oases. Academic, Sydney, pp 165–202Google Scholar
  36. Brodo IM (1973) Substrate ecology. In: Ahmadjian V, Hale ME (eds) The lichens. Academic, LondonGoogle Scholar
  37. Cao SN, Zhang J, Zheng HY, Liu CP, Zhou QM (2015) Photosynthetic performance in Antarctic lichens with different growth forms reflect the diversity of lichenized algal adaptations to microhabitats. Polish Polar Res 36:175–188. https://doi.org/10.1515/popore-2015-0012 CrossRefGoogle Scholar
  38. Clayden SR (1998) Thallus initiation and development in the lichen Rhizocarpon lecanorinum. New Phytol 139:685–695CrossRefGoogle Scholar
  39. Convey P, Chown SL, Clarke A, Barnes, Bokhurst S, Cummings V, Ducklow HW, Frati F, Green TGA, Gordon S, Griffiths HJ, Howard-Williams C, Huiskes AHL, Laybourn-Parry J, Lyons WB, McMinn A, Morley SA, Peck LS, Quesada A, Robinson SA, Schiaparelli S, Wall DH (2014) The spatial structure of Antarctic biodiversity. Ecol Monogr 84:203–244. https://doi.org/10.1890/12-2216.1 CrossRefGoogle Scholar
  40. Cuny D, Van Haluwyn C, Shiralli P, Zerimech F, Jerome L, Haguenoer JM (2004) Cellular impact of metal trace elements in terricolous lichen Diploschistes muscorum (Scop.) R Sant., − identification of oxidative stress biomarkers. Water Air Soil Pollut 152:55–69CrossRefGoogle Scholar
  41. Dodge CW (1973) Lichen Flora of the Antarctic continent and Adjacent Islands. Phoenix, CanaanGoogle Scholar
  42. Fahselt D (1998) Production of ascocarps by high Arctic lichens in relation to altitude. In: Glenn MG, Harris RC, Dirig R, Cole MS (eds) Lichenographia Thomsoniana: North American lichenology in honour of JW Thomson. Mycotaxon Ltd, Ithaca, pp 389–397Google Scholar
  43. Farrar JF (1973) Lichen physiology. In: Ferry BW, Baddeley MS, Hawksworth DL (eds) Progress and problems in lichenology. Athlone Press, University of London, London, pp 238–282Google Scholar
  44. Farrar JF (1976) The lichen as an ecosystem: observation and experiment. In: Brown DH, Bailey RH, Hawksworth DL (eds) Progress and problems in lichenology. Academic, London, pp 385–406Google Scholar
  45. Figueira R, Sousa AJ, Brown DH, Catarino F, Pacheco AMG (1999) Natural levels of saline elements in lichens: determination of cellular fractions and their importance as saline tracers. Lichenologist 31:183–196. https://doi.org/10.1006/lich.1998.0179 CrossRefGoogle Scholar
  46. Fletcher A (1976) Nutritional aspects of marine and maritime lichen ecology. In: Brown DH, Bailey RH, Hawksworth DL (eds) Progress and problems in lichenology. Academic, London, pp 359–384Google Scholar
  47. Follman G (1967) Zur Bedentung der Salzbestänbung für die Krustenflecten. Ber Dtsch Bot Ges 80:206–208Google Scholar
  48. Friedmann EI (1977) Microorganisms in Antarctic desert rocks from dry valleys and Dufek Massif. Antarc J US 12:26–30Google Scholar
  49. Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053PubMedCrossRefGoogle Scholar
  50. Galun M (1963) Autecological and synecological observations on lichens in the Negev, Israel. Isreal J Bot 12:179–187Google Scholar
  51. Garty J, Kauppi M, Kauppi A (1995) Differential responses of certain lichen species to sulphur-containing solutions under acidic conditions as expressed by the production of stress-ethylene. Environ Res 69:132. https://doi.org/10.1006/enrs.1995.1034 PubMedCrossRefGoogle Scholar
  52. Garvie LAJ, Knauth LP, Bungartz F, Kionowski S, Nash TH (2008) Life in extreme environments: survival strategy of the endolithic desert lichen Verrucaria rubrocincta. Naturwissenschaften 95:705–712. https://doi.org/10.1007/s00114-008-0373-0 PubMedCrossRefGoogle Scholar
  53. Glenn MG, Orsi EV, Hemsley ME (1991) Lichen metal contents as correlates of air filter measurements. Grana 30:44–47CrossRefGoogle Scholar
  54. Glenn MG, Gomez-Bolea A, Lobello R (1995) Metal content and community structure of cryptogram bioindicators in relation to vehicular traffic in Montseny Biosphere Reserve (Catalonia, Spain). Lichenologist 27:291–304CrossRefGoogle Scholar
  55. Green TGA, Snelgar WP, Brown DH (1981) Carbon dioxide exchange in lichens. Carbon dioxide exchange through cyphellate lower cortex of Sticta latifrons rich. New Phytol 88:421–426. https://doi.org/10.1111/j.1469-8137.1981.tb04090.x CrossRefGoogle Scholar
  56. Grime JP (1979) Plant strategies and vegetation processes. Wiley, LondonGoogle Scholar
  57. Haag RW (1974) Nutrient limitations to plant production in two tundra communities. Can J Bot 52:103–116CrossRefGoogle Scholar
  58. Hale ME (1967) The biology of lichens. Edward Arnold, LondonGoogle Scholar
  59. Hauk M, Jurgens SR, Brinkman M, Heminghaus S (2008) Surface hydrophobicity causes SO2 tolerance in lichens. Anns Bot 101:531–539. https://doi.org/10.1093/aob/mcm306 CrossRefGoogle Scholar
  60. Hauk M, Jurgens SR, Huneck S, Leuschner C (2009) High acidity tolerance in lichens with fumarprotocetraric, periatolic or thamnolic acids correlated with low pK(a1) values of these lichen substances. Environ Pollut 157:2776–2780. https://doi.org/10.1016/j.envpol.2009.04.022 CrossRefGoogle Scholar
  61. Hertel H (1984) Über Saxicole, Lecideoide Flechten der Subantarckis. In: Hertel H, Oberwinkler F, Cramer J (eds) Beiträge zur lichenologie, Festschrift J Poelt. Vaduz, pp 399–499Google Scholar
  62. Hilmo O (1994) Distribution and succession of epiphytic lichens on Picea abies branches in a boreal forest, Central Norway. Lichenologist 26:149–169CrossRefGoogle Scholar
  63. Honegger R (1978) Ascarpontogenie, Axusstrukter und funktion bei Vertretern der Gattung Rhizocarpon. Beriche Dtsch Botanischen Ges 91:579–594Google Scholar
  64. James PW, Hawksworth DL, Rose F (1977) In: Seaward MRD (ed) Lichen communities in the British isles: a preliminary conspectus. Academic, London, pp 295–419Google Scholar
  65. John EA (1989) An assessment of the role of biotic interactions and dynamic processes in the organisation of a species in a saxicolous lichen community. Can J Bot 67:2025–2037CrossRefGoogle Scholar
  66. Kallio P, Heinonen S (1971) Influence of short-term low temperature on net photosynthesis in some subarctic lichens. Rep Kevo Subarct Res Stn 8:63–72Google Scholar
  67. Kappen L (1973) Response to extreme environments. In: Ahmadjian V, Hale ME (eds) The lichens. Academic, New York, pp 311–380CrossRefGoogle Scholar
  68. Kappen L (1983) Ecology and physiology of the Antarctic fruticose lichen Usnea sulphurea (Koenig) Th. Fries. Polar Biol 1:249–255. https://doi.org/10.1007/BF00443196 CrossRefGoogle Scholar
  69. Kappen L (1985) Water relations and net photosynthesis of Usnea. A comparison between Usnea faciata (maritime Antarctic) and Usnea sulphurea (continental Antarctic). In: Brown DH (ed) Lichen physiology and cell biology. Plenum Press, New York, pp 41–56CrossRefGoogle Scholar
  70. Kappen L (1988) Chapter II.B.2: Ecophysiological relationships in different climatic regions. In: Galun M (ed) Handbook of lichenology, vol 2. CRC Press, Boca RatoGoogle Scholar
  71. Kappen L, Friedmann EI (1983) Ecophysiology of lichens in the dry valleys of southern Victoria-land, Antarctic. 2. CO2 gas exchange in cryptoendolithic lichens. Polar Biol 1:227–232. https://doi.org/10.1007/BF00443193 CrossRefGoogle Scholar
  72. Kappen L, Friedmann EI, Garty J (1981) Ecophysiology of lichens in the dry valleys of southern Victoria-land, Antarctic. 1. Microclimate of the cryptoendolithic-lichen habitat. Flora 171:216–235CrossRefGoogle Scholar
  73. Kärenlampi L, Pelkonen M (1971) Studies on the morphological variation of the lichen Cladonia uncialis. Rep Kevo Res Stn 7:47–53Google Scholar
  74. Kershaw KA (1978) The role of lichens in boreal tundra transition areas. Bryologist 81:294–306. https://doi.org/10.2307/3242190 CrossRefGoogle Scholar
  75. Kershaw KA (1983) The thermal operating-environment of a lichen. Lichenologist 15:191–207. https://doi.org/10.1017/S002428298300286 CrossRefGoogle Scholar
  76. Kidron GJ (2002) Causes of the two patterns of lichen zonation on cobbles in the Negev Desert Israel. Lichenologist 34:71–80. https://doi.org/10.1006/lich.2001.0366 CrossRefGoogle Scholar
  77. Kranner I, Cram WJ, Zorn M, Wornik S, Yoshimura I, Stabentheiner E, Pfeifhofer HW (2005) Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc Natl Acad Sci U S A 102:3141–3146. https://doi.org/10.1073/pnas.0407716102 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kuznetz LH, Gan DC (2002) On the existence and stability of liquid water on the surface of Mars today. Astrobiology 2:183–195. https://doi.org/10.1089/15311070260192255 PubMedCrossRefGoogle Scholar
  79. Lange OL (1953) Hitze- und Trokenresistenz der Flechten in Beziehung zu ihrer Verbreitung. Flora. (Jena) 140:39–97Google Scholar
  80. Lange OL (1966) CO2-Gaswechsel der Fechte Cladonia alcicornis nach Langfristigem Aufenthalt bei tiefen Temperaturen. Flora 156(B):500–502Google Scholar
  81. Lange OL, Bertsch A (1965) Photosynthese der Wüstenflechte Ramalina maciformis nach Wasserdampfaufnahme aus dem Luftraum. Naturwissenschaften 52:215CrossRefGoogle Scholar
  82. Lange OL, Killian E (1985) Reaktvierung der Photosynthese trockener Flechten durch Wasserdampfanfriahire aus dem Luftraum. Flora 176:7–23CrossRefGoogle Scholar
  83. Lange OL, Budel B, Heber U, Meyer A, Zellner H, Green TGA (1993) Temperate rain-forest lichens in New Zealand, high thallus water content can severely limit photosynthetic CO2 exchange. Oecologia 95:303–313PubMedCrossRefGoogle Scholar
  84. Larsen DW (1984) Thallus size as a complicating factor in the physiological ecology of lichens. New Phytol 97:87–97CrossRefGoogle Scholar
  85. Lawrey JD (1984) Biology of lichenized fungi. Praeger Publishers, New YorkGoogle Scholar
  86. Lawrey JD (1995) Lichen allelopathy-a review. ACS Symp Ser 582:26–38CrossRefGoogle Scholar
  87. Li H, Wei JC (2016) Functional analysis of thioredoxin from the desert lichen-forming fungus, Endocarpon pusillum Hedwig, reveals its role in stress tolerance. Sci Rep 6:27184. https://doi.org/10.1038/srep27184 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Lindsay DC (1978) The role of lichens in Antarctic ecosystems. Bryologist 81:268–276. https://doi.org/10.2307/3242188 CrossRefGoogle Scholar
  89. Link SO, Nash TH (1984) An analysis of an arctic lichen community with respect to slope on siliceous rocks at Anaktuvuk Pass, Alaska. Bryologist 87:162–166. https://doi.org/10.2307/3243126 CrossRefGoogle Scholar
  90. Llano GA (1965) The flora of Antarctica. In: Hatherton T (ed) Antarctica. Methuen & Co, London, pp 331–350Google Scholar
  91. Llimona X (1982) Lichens of the arid Mediterranean area and North Africa. J Hattori Bot Lab 33:345–359Google Scholar
  92. Longton RE (1979) Vegetation ecology and classification in the Antarctic zone. Can J Bot 57:2264–2278CrossRefGoogle Scholar
  93. Marton K, Galun M (1981) The cyanophilous lichen population of the Arava valley and the Judean Desert (Israel). Isreal J Bot 30:125–155Google Scholar
  94. Massara AC, Bates JW, Bell JNB (2009) Exploring causes of the decline of the lichen Lecanora conizaeoides in Britain: effects of experimental N and S applications. Lichenologist 41:673–681CrossRefGoogle Scholar
  95. Matos P, Cardosa-Vihena J, Figueira R, Sousa A (2011) Effects of salinity stress on cellular location of elements and photosynthesis in Ramalina canariensis Steiner. Lichenologist 43:155–164. https://doi.org/10.1017/S0024282910000757 CrossRefGoogle Scholar
  96. Matthes U (1980) Photosynthetischer CO2-Gaswechsel Verschiedener Flechtenarten in Abhängigkeit vom Wassergehalt des Thallus. Diplomarbeit, WürzburgGoogle Scholar
  97. Mattick F (1954) Die Flechten der Tropen. Congrès Int de Botanique, Botanisches Museum Berlin Dahlem, Rapport, p 21Google Scholar
  98. Meessen J, Backhaus T, Sadowsky A, Mrkalj M, Sanchez FJ, de la Torre R, Ott S (2014) Effects of UVC254 nm on the photosynthetic activity of photobionts from the astrobiologically relevant lichens Buellia frigida and Circinaria gyrosa. Int J Astrobiol 13:340–352. https://doi.org/10.1017/S1473550414000275 CrossRefGoogle Scholar
  99. Monteil PO (2000) Soluble carbohydrates (trehalose in particular) and cryoprotection in polar biota. Cryo-Lett 21:83–90Google Scholar
  100. Nash TH, Moser TJ, Bertke CC, Link SO, Sigal LL, White SL, Fox CA (1982a) Photosynthetic patterns of Sonoran desert lichens. I. Environmental considerations and preliminary field measurements. Flora 172:335–345CrossRefGoogle Scholar
  101. Nash TH, Lange OL, Kappen L (1982b) Photosynthetic patterns of Sonoran desert lichens. II A multivariate laboratory analysis. Flora 172:419–426CrossRefGoogle Scholar
  102. Nier AO, Hanson WB, Seiff WB, McElroy MB, Spencer NW, Duckett RJ et al (2003) Composition and structure of the Martian atmosphere: preliminary results from Viking 1. J Mass Spect 38:3–5. (reprinted from Science 193:786–788, 1976)Google Scholar
  103. Nordhagen R (1928) Die Vegetation und Flora des Sylenegebietes. I. die Vegetation. Skr Nor Vidensk Akad Oslo 1:1–612Google Scholar
  104. Oberlander GT (1956) Summer fog precipitation on the San Francisco Peninsula. Ecology 37:851–852CrossRefGoogle Scholar
  105. Odum EP (1971) Fundamentals of ecology. WB Saunders Co, PhiladelphiaGoogle Scholar
  106. Onofri S, de Vera JP, Zucconi L, Selbmann L, Scalzi G, Venkateswaran KJ, Rabbow E, de la Torre R, Homeck G (2015) Survival of Antarctic cryptoendolithic fungi in simulated Martian conditions on board the International Space Station. Astrobiology 15:1052–1324. https://doi.org/10.1089/ast.2015.1324 PubMedCrossRefGoogle Scholar
  107. Ott S (2004) Early stages of development in Usnea antarctica Du Rietz in the South Shetland Islands, northern maritime Antarctica. Lichenologist 36:413–423. https://doi.org/10.1017/S0024282904014380 CrossRefGoogle Scholar
  108. Pannewitz S, Schlensog M, Green TGA, Sancho LG, Schroeter B (2003) Are lichens active under snow in continental Antarctica? Oecologia 135:30–38PubMedCrossRefGoogle Scholar
  109. Piercey-Normore MD, Deduke C (2011) Fungal farmers or algal escorts: lichen adaptation from the algal perspective. Mol Ecol 20:3708–3710. https://doi.org/10.1111/j.1365-294X.2011.05191.x PubMedCrossRefGoogle Scholar
  110. Piervittori R, Alessio F, Maffei M (1994) Fatty-acid variations in the lichen Xanthoria parietina. Phytochemistry 36:853–856CrossRefGoogle Scholar
  111. Pinokiyo A, Singh KP, Singh JS (2008) Diversity and distribution of lichens in relation to altitude within a protected biodiversity hot spot, north-east India. Lichenologist 40:47–62. https://doi.org/10.1017/S0024282908007214 CrossRefGoogle Scholar
  112. Pitman GTK (1973) A lichenometrical study of snowpatch variation in the Frederikshåb district, southwest Greenland and its implication for the study of climatic and glacial fluctuations. Bull Grønl Undersøkelse 104:1–31Google Scholar
  113. Puckett KJ, Nieboer E, Gorzinski MJ, Richardson DHS (1973) The uptake of metal ions by lichens: a modified ion-exchange process. New Phytol 72:329–342CrossRefGoogle Scholar
  114. Raggio J, Pintado A, Ascaso C, de la Torre R, de los Rios A, Wierzchos J, Horneck G, Sancho LG (2011) Whole lichen thalli survive exposure to space conditions: results of Lithopanspermia experiment with Aspicilia fruticulosa. Astrobiology 11:281–292. https://doi.org/10.1089/ast.2010.0588 PubMedCrossRefGoogle Scholar
  115. Raggio J, Green TGA, Sancho LG (2016) In situ monitoring of microclimate and metabolic activity in lichens from Antarctic extremes: a comparison between South Shetland Islands and the McMurdo Dry Valleys. Polar Biol 39:113–122. https://doi.org/10.1007/s00300-015-1676-1 CrossRefGoogle Scholar
  116. Ramkaer K (1978) The influence of salinity on the establishment phase of rocky shore lichens. Bot Tidsskr 72:119–123Google Scholar
  117. Richardson DHS (1995) Metal uptake by lichens. Symbiosis 18:119–127Google Scholar
  118. Richardson DHS, Hill DJ, Smith DC (1968) Lichen physiology XI. The role of the alga in determining the pattern of carbohydrate movement between lichen symbionts. New Phytol 67:469–486CrossRefGoogle Scholar
  119. Riehmer R (1932) Eine Okologie Afrikanischer Rindenflechten. (Quoted in L Kappen 1988)Google Scholar
  120. Rogers RW (1971) Distribution of the lichen Chondropsis semiviridis in relation to its heat and drought resistance. New Phytol 70:1069CrossRefGoogle Scholar
  121. Rogers RW (1990) Ecological strategies of lichens. Lichenologist 22:149–289CrossRefGoogle Scholar
  122. Rundel PW (1978) Ecological relationships of desert fog lichens. Bryologist 81:277–293CrossRefGoogle Scholar
  123. Rundel PW (1988) Chapter II.B.2: Water relations. In: Galun M (ed) Handbook of lichenology, vol 2. CRC Press, Boca RatonGoogle Scholar
  124. Russel RS (1940) Physiological and ecological studies on an arctic vegetation. III. Observations on carbon assimilation, carbohydrate storage and stomatal movement in relation to the growth of plants on Jan Mayen Island. J Ecol 28:289–309CrossRefGoogle Scholar
  125. Rustichelli C, Visioli G, Kostecka D, Vurro E, Sanita di Troppi L, Marmiroli N (2008) Proteomic analysis of the lichen Physcia adscendens exposed to cadmium stress. Environ Pollut 156:1121–1127. https://doi.org/10.1016/j.envpol.2008.04.010 PubMedCrossRefGoogle Scholar
  126. Sadowsky A, Ott S (2016) Symbiosis as a successful strategy in continental Antarctica: performance and protection of Trebouxia photosystem II in relation to lichen pigmentation. Polar Biol 39:139–151. https://doi.org/10.1007/s00300-015-1677-0 CrossRefGoogle Scholar
  127. Sancho LG, Green TGA, Pintado A (2007) Slowest to fastest: extreme range in lichen growth rates supports their use as an indicator of climate change in Antarctica. Flora 202:667–673CrossRefGoogle Scholar
  128. Schroeter B, Scheidegger C (1995) Water relations in lichens at subzero temperatures – structural changes and carbon-dioxide exchange in the lichen Umbilicaria aprina from continental Antarctica. New Phytol 131:273–285. https://doi.org/10.1111/j.1469-8137.1995.tb05729.x CrossRefGoogle Scholar
  129. Shirtcliffe NJ, Pyatt FB, Newton MI, McHale G (2006) A lichen protected by a super-hydrophobic and breathable structure. J Plant Physiol 163:1193–1197. https://doi.org/10.1016/jplph.2005.11.007 PubMedCrossRefGoogle Scholar
  130. Smiley TL, Zumbergh JH (1971) Polar deserts. Science 174:79–80PubMedCrossRefGoogle Scholar
  131. Smith RIL (1984) Terrestrial plant biology of the sun-Arctic and Antarctica. In: Laws RM (ed) Antarctic ecology, vol 1. Academic, New York, pp 61–162Google Scholar
  132. Smith RIL (1995) Colonization by lichens and the development of lichen-dominated communities in the maritime Antarctic. Lichenologist 27:473–483. https://doi.org/10.1016/S0024-2829(95)80007-7 CrossRefGoogle Scholar
  133. Smith DC, Douglas E (1987) The biology of symbiosis. Edward Arnold, VictoriaGoogle Scholar
  134. Smith DC, Molesworth S (1973) Lichen physiology XIII. Effects of rewetting dry lichens. New Phytol 72:525–533. https://doi.org/10.1111/j.1469-8137.1973.tb04403.x CrossRefGoogle Scholar
  135. Strobl A, Turk R, Thalhamer J (1994) Investigations on the protein composition of the lichen Pseudevernia furfuracea (L.) Zopt. Var Ceratea (Ach.) Hawksw. From different altitudes. Phyton-Anns Bot 34:67–83Google Scholar
  136. Thomson JW (1982) Lichen vegetation and ecological patterns in the high Arctic. J Hattori Bot Lab 53:361–364Google Scholar
  137. Titus TN, Kieffer HH, Christensen PR (2003) Exposed water ice discovered near the south pole of Mars. Science 290:1048–1051. https://doi.org/10.1126/science.1080497 CrossRefGoogle Scholar
  138. Uchida M, Nakatsubo T, Kanda H, Koizumi H (2006) Estimation of annual primary production of the lichen Cetrariella delisei in a glacier foreland in the high Arctic, Nylalesund, Svalbard. Polar Res 25:39–49. https://doi.org/10.1111/j.1751-8369.2006.tb00149.x Google Scholar
  139. Vareschi V (1956) Algunos aspectos de la ecologia vegetal de la zona mas alto de la Sierra Nevada de Merida. Biol Fac Cienc For 3:9–16. (Quoted in L Kappen 1988)Google Scholar
  140. Vogel S (1955) Niedere ‘Fensterpfanzen’ in der Südafrikanisch Wüste, Eine Ökologische Schilderung. Beitr Biol Pfanz 32:45–135Google Scholar
  141. Weber WA (1962) Environmental modification and the taxonomy of the crustose lichens. Sven Bot Tidskr 56:293–333Google Scholar
  142. Wierzchos J, Davila AF, Artieda O, Camara-Gallego B, Rios AD, Nealson KH, Valea S, Garcia-Gonzalez MT, Ascaso C (2013) Ignimbrite as a substrate for endolithic life in the hyper-arid Atacama desert: implications for the search for life on Mars. Icarus 224:334–346. https://doi.org/10.1016/j.icarus.2012.06.009 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Vision SciencesAston UniversityBirminghamUK

Personalised recommendations