LEF/TCF: Its Role in Colon Cancer

Chapter

Abstract

Many advances have been made in understanding the role of transcription factors in different types of cancer. With colorectal cancer being the third most commonly diagnosed cancer, studying critical transcription factors such as the lymphoid enhancer factor/T-cell factor (LEF/TCF) transcription factor family may assist in understanding its growth and progression but also serve as a therapeutic target in hopes for better patient outcomes. This chapter will discuss the pathway LEF/TCF transcription factors are known to be involved in, their regulation, and current studies that have investigated their role and function in colorectal cancer and normal cell maintenance.

Keywords

LEF/TCF Colorectal cancer Wnt signaling Transcription factors 

References

  1. 1.
    Barker N (2008) The canonical Wnt/beta-catenin signalling pathway. Methods Mol Biol 468:5–15PubMedCrossRefGoogle Scholar
  2. 2.
    Miller JR (2002) The Wnts. Genome Biol 3(1):1–9Google Scholar
  3. 3.
    Hobmayer B et al (2000) WNT signalling molecules act in axis formation in the diploblastic metazoan hydra. Nature 407(6801):186–189PubMedCrossRefGoogle Scholar
  4. 4.
    Grimson MJ et al (2000) Adherens junctions and beta-catenin-mediated cell signalling in a non-metazoan organism. Nature 408(6813):727–731PubMedCrossRefGoogle Scholar
  5. 5.
    Miyoshi Y et al (1992) Germ-line mutations of the APC gene in 53 familial adenomatous polyposis patients. Proc Natl Acad Sci 89(10):4452–4456PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149(6):1192–1205PubMedCrossRefGoogle Scholar
  7. 7.
    van de Wetering M et al (1993) Sox-4, an Sry-like HMG box protein, is a transcriptional activator in lymphocytes. EMBO J 12(10):3847–3854PubMedPubMedCentralGoogle Scholar
  8. 8.
    Brunner E et al (1997) Pangolin encodes a Lef-1 homologue that acts downstream of armadillo to transduce the wingless signal in drosophila. Nature 385(6619):829–833PubMedCrossRefGoogle Scholar
  9. 9.
    van de Wetering M et al (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111(2):241–250PubMedCrossRefGoogle Scholar
  10. 10.
    Lin R, Hill RJ, Priess JR (1998) POP-1 and anterior-posterior fate decisions in C. elegans embryos. Cell 92(2):229–239PubMedCrossRefGoogle Scholar
  11. 11.
    van Amerongen R, Berns A (2006) Knockout mouse models to study Wnt signal transduction. Trends Genet 22(12):678–689PubMedCrossRefGoogle Scholar
  12. 12.
    Colorectal Cancer Facts & Figures 2014–2016. 2014, American Cancer Society.Google Scholar
  13. 13.
    Oosterwegel M et al (1991) Cloning of murine TCF-1, a T cell-specific transcription factor interacting with functional motifs in the CD3-epsilon and T cell receptor alpha enhancers. J Exp Med 173(5):1133–1142PubMedCrossRefGoogle Scholar
  14. 14.
    van de Wetering M et al (1991) Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J 10(1):123–132PubMedPubMedCentralGoogle Scholar
  15. 15.
    Travis A et al (1991) LEF-1, a gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor alpha enhancer function [corrected]. Genes Dev 5(5):880–894PubMedCrossRefGoogle Scholar
  16. 16.
    Arce L, Pate KT, Waterman ML (2009) Groucho binds two conserved regions of LEF-1 for HDAC-dependent repression. BMC Cancer 9:159PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Maduro MF et al (2005) The Wnt effector POP-1 and the PAL-1/caudal homeoprotein collaborate with SKN-1 to activate C. elegans endoderm development. Dev Biol 285(2):510–523PubMedCrossRefGoogle Scholar
  18. 18.
    Shetty P et al (2005) C. elegans TCF protein, POP-1, converts from repressor to activator as a result of Wnt-induced lowering of nuclear levels. Dev Biol 285(2):584–592PubMedCrossRefGoogle Scholar
  19. 19.
    El-Tanani M et al (2004) Ets gene PEA3 cooperates with beta-catenin-Lef-1 and c-Jun in regulation of osteopontin transcription. J Biol Chem 279(20):20794–20806PubMedCrossRefGoogle Scholar
  20. 20.
    Behrens J et al (1996) Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382(6592):638–642PubMedCrossRefGoogle Scholar
  21. 21.
    Rao TP, Kuhl M (2010) An updated overview on Wnt signaling pathways: a prelude for more. Circ Res 106(12):1798–1806PubMedCrossRefGoogle Scholar
  22. 22.
    Shtutman M et al (1999) The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A 96(10):5522–5527PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398(6726):422–426PubMedCrossRefGoogle Scholar
  24. 24.
    He TC et al (1998) Identification of c-MYC as a target of the APC pathway. Science 281(5382):1509–1512PubMedCrossRefGoogle Scholar
  25. 25.
    Gradl D, Kuhl M, Wedlich D (1999) The Wnt/Wg signal transducer beta-catenin controls fibronectin expression. Mol Cell Biol 19(8):5576–5587PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    ten Berge D et al (2008) Wnt and FGF signals interact to coordinate growth with cell fate specification during limb development. Development 135(19):3247–3257PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    He TC et al (1999) PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell 99(3):335–345PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Mann B et al (1999) Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci U S A 96(4):1603–1608PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Conacci-Sorrell ME et al (2002) Nr-CAM is a target gene of the beta-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes Dev 16(16):2058–2072PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Hovanes K et al (2001) Beta-catenin-sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer. Nat Genet 28(1):53–57PubMedGoogle Scholar
  31. 31.
    Li TW et al (2006) Wnt activation and alternative promoter repression of LEF1 in colon cancer. Mol Cell Biol 26(14):5284–5299PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hovanes K, Li TW, Waterman ML (2000) The human LEF-1 gene contains a promoter preferentially active in lymphocytes and encodes multiple isoforms derived from alternative splicing. Nucleic Acids Res 28(9):1994–2003PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Jimenez J et al (2005) An internal ribosome entry site mediates translation of lymphoid enhancer factor-1. RNA 11(9):1385–1399PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kikuchi A, Kishida S, Yamamoto H (2006) Regulation of Wnt signaling by protein-protein interaction and post-translational modifications. Exp Mol Med 38(1):1–10PubMedCrossRefGoogle Scholar
  35. 35.
    Ishitani T et al (1999) The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. Nature 399(6738):798–802PubMedCrossRefGoogle Scholar
  36. 36.
    Ishitani T et al (2003) The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca[2+] pathway to antagonize Wnt/beta-catenin signaling. Mol Cell Biol 23(1):131–139PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Brannon M et al (1997) A beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev 11(18):2359–2370PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Daniels DL, Weis WI (2005) Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat Struct Mol Biol 12(4):364–371PubMedCrossRefGoogle Scholar
  39. 39.
    Arce L, Yokoyama NN, Waterman ML (2006) Diversity of LEF/TCF action in development and disease. Oncogene 25(57):7492–7504PubMedCrossRefGoogle Scholar
  40. 40.
    Hoppler S, Kavanagh CL (2007) Wnt signalling: variety at the core. J Cell Sci 120(Pt 3):385–393PubMedCrossRefGoogle Scholar
  41. 41.
    Ding Y et al. (2014) The S-G2 phase enriched β-catenin/TCF complex ensures cell survival and cell cycle progression. J Cell Sci 127:4834–4840Google Scholar
  42. 42.
    Morgan DO (1995) Principles of CDK regulation. Nature 374(6518):131–134PubMedCrossRefGoogle Scholar
  43. 43.
    Matsushime H, Roussel MF, Sherr CJ (1991) Novel mammalian cyclins [CYL genes] expressed during G1. Cold Spring Harb Symp Quant Biol 56:69–74PubMedCrossRefGoogle Scholar
  44. 44.
    Baldin V et al (1993) Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev 7(5):812–821PubMedCrossRefGoogle Scholar
  45. 45.
    Mermelshtein A et al (2005) Expression of D-type cyclins in colon cancer and in cell lines from colon carcinomas. Br J Cancer 93(3):338–345PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Arber N et al (1996) Increased expression of cyclin D1 is an early event in multistage colorectal carcinogenesis. Gastroenterology 110(3):669–674PubMedCrossRefGoogle Scholar
  47. 47.
    Sutter T et al (1997) Expression of cyclins D1 and E in human colon adenocarcinomas. J Med 28(5–6):285–309PubMedGoogle Scholar
  48. 48.
    Bukholm IK, Nesland JM (2000) Protein expression of p53, p21 [WAF1/CIP1], bcl-2, Bax, cyclin D1 and pRb in human colon carcinomas. Virchows Arch 436(3):224–228PubMedCrossRefGoogle Scholar
  49. 49.
    Arber N et al (1997) Antisense to cyclin D1 inhibits the growth and tumorigenicity of human colon cancer cells. Cancer Res 57(8):1569–1574PubMedGoogle Scholar
  50. 50.
    Korinek V et al (1998) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 19(4):379–383PubMedCrossRefGoogle Scholar
  51. 51.
    Lecuit T, Lenne PF (2007) Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat Rev Mol Cell Biol 8(8):633–644PubMedCrossRefGoogle Scholar
  52. 52.
    Vlad-Fiegen A et al (2012) The Wnt pathway destabilizes adherens junctions and promotes cell migration via beta-catenin and its target gene cyclin D1. FEBS Open Biol 2:26–31CrossRefGoogle Scholar
  53. 53.
    Sánchez-Tilló E et al (2011) β-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition [EMT]-activator ZEB1 to regulate tumor invasiveness. Proc Natl Acad Sci 108(48):19204–19209PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Planutis K, Planutiene M, Holcombe RF (2010) Abstract LB-367: Wnt-dependent transcription factor LEF-1 controls endothelial cell invasion through changes of MMP-2 expression. Cancer Res 70(8 Supplement):LB-367-LB-367CrossRefGoogle Scholar
  55. 55.
    Medici D, Hay ED, Olsen BR (2008) Snail and slug promote epithelial-mesenchymal transition through β-Catenin–T-Cell Factor-4-dependent expression of transforming growth factor-β3. Mol Biol Cell 19(11):4875–4887PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Fidler IJ (1990) Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Res 50(19):6130–6138PubMedGoogle Scholar
  57. 57.
    Rothbarth J, van de Velde CJ (2005) Treatment of liver metastases of colorectal cancer. Ann Oncol 16(Suppl 2):ii144–ii149PubMedGoogle Scholar
  58. 58.
    Gallagher DJ, Kemeny N (2010) Metastatic colorectal cancer: from improved survival to potential cure. Oncology 78(3–4):237–248PubMedCrossRefGoogle Scholar
  59. 59.
    Li Y et al (2011) HEF1, a novel target of Wnt signaling, promotes colonic cell migration and cancer progression. Oncogene 30(23):2633–2643PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Dai Y et al (2017) Loss of FOXN3 in colon cancer activates beta-catenin/TCF signaling and promotes the growth and migration of cancer cells. Oncotarget 8(6):9783–9793PubMedCrossRefGoogle Scholar
  61. 61.
    Ratner M (2004) Genentech discloses safety concerns over Avastin. Nat Biotechnol 22(10):1198PubMedCrossRefGoogle Scholar
  62. 62.
    Ellis LM (2004) Epidermal growth factor receptor in tumor angiogenesis. Hematol Oncol Clin North Am 18(5):1007–1021. viiiPubMedCrossRefGoogle Scholar
  63. 63.
    Takahashi Y et al (1995) Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res 55(18):3964–3968PubMedGoogle Scholar
  64. 64.
    Mar AC et al (2015) Interleukin-1 receptor type 2 acts with c-Fos to enhance the expression of interleukin-6 and vascular endothelial growth factor A in colon cancer cells and induce angiogenesis. J Biol Chem 290(36):22212–22224PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Clifford RL, Deacon K, Knox AJ (2008) Novel regulation of vascular endothelial growth factor-A [VEGF-A] by transforming growth factor [beta]1: requirement for Smads, [beta]-CATENIN, AND GSK3[beta]. J Biol Chem 283(51):35337–35353PubMedCrossRefGoogle Scholar
  66. 66.
    Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Wang SH et al (2012) The balance between two isoforms of LEF-1 regulates colon carcinoma growth. BMC Gastroenterol 12:53PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Reya T et al (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423(6938):409–414PubMedCrossRefGoogle Scholar
  69. 69.
    Ng TB, Liu F, Wang ZT (2000) Antioxidative activity of natural products from plants. Life Sci 66(8):709–723PubMedCrossRefGoogle Scholar
  70. 70.
    Cai Y et al (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74(17):2157–2184PubMedCrossRefGoogle Scholar
  71. 71.
    Kaneko T, Tahara S, Takabayashi F (2007) Inhibitory effect of natural coumarin compounds, esculetin and esculin, on oxidative DNA damage and formation of aberrant crypt foci and tumors induced by 1,2-dimethylhydrazine in rat colons. Biol Pharm Bull 30(11):2052–2057PubMedCrossRefGoogle Scholar
  72. 72.
    Lepourcelet M et al (2004) Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell 5(1):91–102PubMedCrossRefGoogle Scholar
  73. 73.
    Sommer T, Hirsch C (2005) San1p, checking up on nuclear proteins. Cell 120(6):736–734CrossRefGoogle Scholar
  74. 74.
    Liu J et al (2006) The third 20 amino acid repeat is the tightest binding site of APC for beta-catenin. J Mol Biol 360(1):133–144PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd 2017

Authors and Affiliations

  1. 1.Geisel School of Medicine at Dartmouth UniversityHanoverUSA

Personalised recommendations