Advertisement

Transcription Factors and Colorectal Cancer: An Overview

  • Uday Sankar Allam
  • Shilpa Kamatham
  • Maraline Adarsha
  • Sk. Md. Jasmine
  • P. V. Giri Prasad
Chapter

Abstract

Colorectal cancer (CRC) is one of the leading causes of cancer deaths worldwide among various cancer malignancies. The drugs and targeted therapies that target various intracellular signaling pathways have improved the progression free survival of CRC patients, but they suffer with therapeutic resistance. Dysregulation or mutations in several oncogenic transcriptional factors such as c-MYC, nuclear factor κB (NFκB), NF-E2-related factor 2 (Nrf2), signal transducer and activator of transcription-3 (STAT-3) and p53, were reported to be associated with CRC. Understanding the transcription factors involved in various CRC pathogenesis will be useful in designing novel therapeutic strategies specifically targeting the dysregulated transcription factors. This chapter emphasizes the role of major transcription factors and their dysregulation in CRC.

Keywords

Colorectal cancer Transcription factors Dysregulation 

Notes

Acknowledgment

Uday Sankar Allam gratefully acknowledges the Dept. of Science and Technology (DST), India, for providing financial support through the Early Career Research Award (ECR/2015/000544). Sk. Md. Jasmine acknowledges the University Grants Commission (UGC), India, for the Maulana Azad National Fellowship (MANF). We also acknowledge the support extended by the Damien Foundation India Trust (DFIT), Chennai.

References

  1. 1.
    Abdelrahim M, Safe S (2005) Cyclooxygenase-2 inhibitors decrease vascular endothelial growth factor expression in colon cancer cells by enhanced degradation of Sp1 and Sp4 proteins. Mol Pharmacol 68(2):317–329PubMedPubMedCentralGoogle Scholar
  2. 2.
    Akiyama Y, Watkins N, Suzuki H, Jair KW, van Engeland M, Esteller M, …, Baylin SB (2003) GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer. Mol Cell Biol 23(23):8429–8439PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Armaghany T, Wilson JD, Chu Q, Mills G (2012) Genetic alterations in colorectal cancer. Gastrointest Cancer Res: GCR 5(1):19Google Scholar
  4. 4.
    Armelao F, de Pretis G (2014) Familial colorectal cancer: a review. World J Gastroenterol: WJG 20(28):9292PubMedPubMedCentralGoogle Scholar
  5. 5.
    Ashida R, Tominaga K, Sasaki E, Watanabe T, Fujiwara Y, Oshitani N, …, Arakawa T (2005) AP-1 and colorectal cancer. Inflammopharmacology 13(1):113–125PubMedCrossRefGoogle Scholar
  6. 6.
    Baba Y, Nosho K, Shima K, Irahara N, Chan AT, Meyerhardt JA, …, Ogino S (2010) HIF1A overexpression is associated with poor prognosis in a cohort of 731 colorectal cancers. Am J Pathol 176(5):2292–2301PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Bajpai R, Nagaraju GP (2017) Specificity protein 1: its role in colorectal cancer progression and metastasis. Crit Rev Oncol Hematol 113:1–7PubMedCrossRefGoogle Scholar
  8. 8.
    Bandarra D, Rocha S (2015) HIF-1α, a novel piece in the NF-κB puzzle. Inflamm Cell Signal 2(2)Google Scholar
  9. 9.
    Banerjee D, Gorlick R, Liefshitz A, Danenberg K, Danenberg PC, Danenberg PV, …, Kemeny N (2000) Levels of E2F-1 expression are higher in lung metastasis of colon cancer as compared with hepatic metastasis and correlate with levels of thymidylate synthase. Cancer Res 60(9):2365–2367Google Scholar
  10. 10.
    Beishline K, Azizkhan-Clifford J (2015) Sp1 and the ‘hallmarks of cancer’. FEBS J 282(2):224–258PubMedCrossRefGoogle Scholar
  11. 11.
    Belaguli NS, Aftab M, Rigi M, Zhang M, Albo D, Berger DH (2010) GATA6 promotes colon cancer cell invasion by regulating urokinase plasminogen activator gene expression. Neoplasia 12(11):856IN1–856865CrossRefGoogle Scholar
  12. 12.
    Bhagwat AS, Vakoc CR (2015) Targeting transcription factors in cancer. Trends Cancer 1(1):53–65PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Boudjadi S, Beaulieu JF (2016) MYC and integrins interplay in colorectal cancer. Oncoscience 3(2):50PubMedPubMedCentralGoogle Scholar
  14. 14.
    Bramis J, Zacharatos P, Papaconstantinou I, Kotsinas A, Sigala F, Korkolis DP, …, Gorgoulis VG (2004) E2F-1 transcription factor immunoexpression is inversely associated with tumor growth in colon adenocarcinomas. Anticancer Res 24(5A):3041–3048Google Scholar
  15. 15.
    Calonge MJ, Massagué J (1999) Smad4/DPC4 silencing and hyperactive Ras jointly disrupt transforming growth factor-β antiproliferative responses in colon cancer cells. J Biol Chem 274(47):33637–33643PubMedCrossRefGoogle Scholar
  16. 16.
    Cao D, Hou M, Guan YS, Jiang M, Yang Y, Gou HF (2009) Expression of HIF-1alpha and VEGF in colorectal cancer: association with clinical outcomes and prognostic implications. BMC Cancer 9(1):432PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Carrasco-Garcia E, Lopez L, Aldaz P, Arevalo S, Aldaregia J, Egaña L, …, Matheu A (2016) SOX9-regulated cell plasticity in colorectal metastasis is attenuated by rapamycin. Sci Rep 6:32350Google Scholar
  18. 18.
    Chang WC, Hung JJ (2012) Functional role of post-translational modifications of Sp1 in tumorigenesis. J Biomed Sci 19(1):94PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Chen L, Jiang B, Wang Z, Liu M, Ma Y, Yang H, …, Cui M (2013) Expression and prognostic significance of GATA-binding protein 2 in colorectal cancer. Med Oncol 30(2):498Google Scholar
  20. 20.
    Cheung KL, Lee JH, Khor TO, Wu TY, Li GX, Chan J, …, Kong ANT (2014) Nrf2 knockout enhances intestinal tumorigenesis in Apcmin/+ mice due to attenuation of anti-oxidative stress pathway while potentiates inflammation. Mol Carcinog 53(1):77–84PubMedCrossRefGoogle Scholar
  21. 21.
    Corvinus FM, Orth C, Moriggl R, Tsareva SA, Wagner S, Pfitzner EB, …, Beug H (2005) Persistent STAT3 activation in colon cancer is associated with enhanced cell proliferation and tumor growth. Neoplasia 7(6):545–555PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    D’Ignazio L, Batie M, Rocha S (2017) Hypoxia and inflammation in cancer, focus on HIF and NF-κB. Biomedicine 5(2):21CrossRefGoogle Scholar
  23. 23.
    Dang CV (2012) MYC on the path to cancer. Cell 149(1):22–35PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Darnell JE (2002) Transcription factors as targets for cancer therapy. Nat Rev Cancer 2(10):740–749PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    de Jong PR, Mo JH, Harris AR, Lee J, Raz E (2014) STAT3: an anti-invasive factor in colorectal cancer? Cancer 6(3):1394–1407CrossRefGoogle Scholar
  26. 26.
    Deniaud E, Baguet J, Chalard R, Blanquier B, Brinza L, Meunier J, …, Castellazzi M (2009) Overexpression of transcription factor Sp1 leads to gene expression perturbations and cell cycle inhibition. PLoS One 4(9):e7035PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Di Stefano L, Jensen MR, Helin K (2003) E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes. EMBO J 22(23):6289–6298PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Dimova DK, Dyson NJ (2005) The E2F transcriptional network: old acquaintances with new faces. Oncogene 24(17):2810–2826PubMedCrossRefGoogle Scholar
  29. 29.
    Ding Z, Yang L, Xie X, Xie F, Pan F, Li J, …, Liang H (2010) Expression and significance of hypoxia-inducible factor-1 alpha and MDR1/P-glycoprotein in human colon carcinoma tissue and cells. J Cancer Res Clin Oncol 136(11):1697–1707PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Dolcet X, Llobet D, Pallares J, Matias-Guiu X (2005) NF-κB in development and progression of human cancer. Virchows Arch 446(5):475–482PubMedCrossRefGoogle Scholar
  31. 31.
    Dong YB, Yang HL, McMasters KM (2003) E2F-1 overexpression sensitizes colorectal cancer cells to camptothecin. Cancer Gene Ther 10(3):168–178PubMedCrossRefGoogle Scholar
  32. 32.
    Dyson N (1998) The regulation of E2F by pRB-family proteins. Genes Dev 12(15):2245–2262PubMedCrossRefGoogle Scholar
  33. 33.
    Eilers M, Eisenman RN (2008) MYC’s broad reach. Genes Dev 22(20):2755–2766PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Elliott MJ, Dong YB, Yang H, McMasters KM (2001) E2F-1 up-regulates c-MYC and p14arf and induces apoptosis in colon cancer cells. Clin Cancer Res 7(11):3590–3597PubMedGoogle Scholar
  35. 35.
    Fang X, Yu W, Li L, Shao J, Zhao N, Chen Q, …, Lin B (2010) ChIP-seq and functional analysis of the SOX2 gene in colorectal cancers. Omics: J Integr Biol 14(4):369–384PubMedCrossRefGoogle Scholar
  36. 36.
    Fang Z, Gong C, Liu H, Zhang X, Mei L, Song M, Qiu L, Luo S, Zhu Z, Zhang R, Hongqian G, Chen X (2015) E2F1 promote the aggressiveness of human colorectal cancer by activating the ribonucleotide reductase small subunit M2. Biochem Biophys Res Commun 464(2):407–415PubMedCrossRefGoogle Scholar
  37. 37.
    Fearon ER (2011) Molecular genetics of colorectal cancer. Annu Rev Pathol: Mech Dis 6(1):479–507CrossRefGoogle Scholar
  38. 38.
    Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JWW, Comber H, …, Bray F (2013) Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 49(6):1374–1403PubMedCrossRefGoogle Scholar
  39. 39.
    Furtek SL, Backos DS, Matheson CJ, Reigan P (2016) Strategies and approaches of targeting STAT3 for cancer treatment. ACS Chem Biol 11(2):308–318PubMedCrossRefGoogle Scholar
  40. 40.
    Gao Y, Feng B, Lu L, Han S, Chu X, Chen L, Wang R (2017) MiRNAs and E2F3: a complex network of reciprocal regulations in human cancers. OncotargetGoogle Scholar
  41. 41.
    Gonda TJ, Ramsay RG (2015) Directly targeting transcriptional dysregulation in cancer. Nat Rev Cancer 15(11):686–694PubMedCrossRefGoogle Scholar
  42. 42.
    Gonzalez-Donquiles C, Alonso-Molero J, Fernandez-Villa T, Vilorio-Marqués L, Molina AJ, Martín V (2017) The NRF2 transcription factor plays a dual role in colorectal cancer: a systematic review. PLoS One 12(5):e0177549PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Greijer AE, Delis-van Diemen PM, Fijneman RJ, Giles RH, Voest EE, van Hinsbergh VW, Meijer GA (2008) Presence of HIF-1 and related genes in normal mucosa, adenomas and carcinomas of the colorectum. Virchows Arch 452(5):535–544PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Grivennikov SI (2013) Inflammation and colorectal cancer: colitis-associated neoplasia. Semin Immunopathol 35(2):229–244PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Guo Z, Zhang W, Xia G, Niu L, Zhang Y, Wang X, …, Wang J (2010) Sp1 upregulates the four and half lim 2 (FHL2) expression in gastrointestinal cancers through transcription regulation. Mol Carcinog 49(9):826–836Google Scholar
  46. 46.
    Hackl C, Lang SA, Moser C, Mori A, Fichtner-Feigl S, Hellerbrand C, …, Stoeltzing O (2010) Activating transcription factor-3 (ATF3) functions as a tumor suppressor in colon cancer and is up-regulated upon heat-shock protein 90 (Hsp90) inhibition. BMC Cancer 10(1):668Google Scholar
  47. 47.
    Harris SL, Levine AJ (2005) The p53 pathway: positive and negative feedback loops. Oncogene 24(17):2899–2908CrossRefGoogle Scholar
  48. 48.
    Hassanzadeh P (2011) Colorectal cancer and NF-κB signaling pathway. Gastroenterol Hepatol Bed to Bench 4(3):127–132Google Scholar
  49. 49.
    He TC, Sparks AB, Rago C, Hermeking H, Zawel L, Da Costa LT, …, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281(5382):1509–1512CrossRefPubMedGoogle Scholar
  50. 50.
    Hellebrekers DM, Lentjes MH, van den Bosch SM, Melotte V, Wouters KA, Daenen KL, …, Khalid-de Bakker CA (2009) GATA4 and GATA5 are potential tumor suppressors and biomarkers in colorectal cancer. Clin Cancer Res 15(12):3990–3997PubMedCrossRefGoogle Scholar
  51. 51.
    Herkert B, Eilers M (2010) Transcriptional repression: the dark side of MYC. Genes Cancer 1(6):580–586PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Hoffman B, Liebermann DA (2008) Apoptotic signaling by c-MYC. Oncogene 27(50):6462–6472PubMedCrossRefGoogle Scholar
  53. 53.
    Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, Sarkar S (2014) Drug resistance in cancer: an overview. Cancer 6(3):1769–1792CrossRefGoogle Scholar
  54. 54.
    Huang P, He Y, Cao J, Dong A, Zhu W, Chen X, …, Nie J (2017) Up-regulated Nrf2 in colorectal carcinoma and predicts poor prognosis. Int J Clin Exp Med 10(1):1034–1042Google Scholar
  55. 55.
    Iacopetta B (2003) TP53 mutation in colorectal cancer. Hum Mutat 21(3):271–276PubMedCrossRefGoogle Scholar
  56. 56.
    Imamura T, Kikuchi H, Herraiz MT, Park DY, Mizukami Y, Mino-Kenduson M, …, Chung DC (2009) HIF-1α and HIF-2α have divergent roles in colon cancer. Int J Cancer 124(4):763–771PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Ioannou M, Paraskeva E, Baxevanidou K, Simos G, Papamichali R, Papacharalambous C, …, Koukoulis G (2015) HIF-1α in colorectal carcinoma: review of the literature. J BUON 20(3):680–689Google Scholar
  58. 58.
    Jass JR (2007) Molecular heterogeneity of colorectal cancer: implications for cancer control. Surg Oncol 16:7–9CrossRefGoogle Scholar
  59. 59.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90PubMedCrossRefGoogle Scholar
  60. 60.
    Ji L, Wei Y, Jiang T, Wang S (2014) Correlation of Nrf2, NQO1, MRP1, cMYC and p53 in colorectal cancer and their relationships to clinicopathologic features and survival. Int J Clin Exp Pathol 7(3):1124PubMedPubMedCentralGoogle Scholar
  61. 61.
    Jiang X, Kim KJ, Ha T, Lee SH (2016) Potential dual role of activating transcription factor 3 in colorectal cancer. Anticancer Res 36(2):509–516PubMedPubMedCentralGoogle Scholar
  62. 62.
    Joerger AC, Fersht AR (2010) The tumor suppressor p53: from structures to drug discovery. Cold Spring Harb Perspect Biol 2(6):a000919PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Jung JE, Kim HS, Lee CS, Shin YJ, Kim YN, Kang GH, …, Ye SK (2008) STAT3 inhibits the degradation of HIF-1α by pVHL-mediated ubiquitination. Exp Mol Med 40(5):479–485PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Kaidi A, Qualtrough D, Williams AC, Paraskeva C (2006) Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. Cancer Res 66(13):6683–6691PubMedCrossRefGoogle Scholar
  65. 65.
    Kalkat M, De Melo J, Hickman KA, Lourenco C, Redel C, Resetca D, …, Penn LZ (2017) MYC deregulation in primary human cancers. Genes 8(6):151PubMedCentralCrossRefGoogle Scholar
  66. 66.
    Kasahara M, Takahashi Y, Nagata T, Asai S, Eguchi T, Ishii Y, …, Ishikawa K (2000) Thymidylate synthase expression correlates closely with E2F1 expression in colon cancer. Clin Cancer Res 6(7):2707–2711Google Scholar
  67. 67.
    Katschinski DM, Le L, Schindler SG, Thomas T, Voss AK, Wenger RH (2004) Interaction of the PAS B domain with HSP90 accelerates hypoxia-inducible factor-1α stabilization. Cell Physiol Biochem 14(4–6):351–360PubMedCrossRefGoogle Scholar
  68. 68.
    Kawasaki Y, Matsumura K, Miyamoto M, Tsuji S, Okuno M, Suda S, …, Akiyama T (2015) REG4 is a transcriptional target of GATA6 and is essential for colorectal tumorigenesis. Sci Rep 5(1)Google Scholar
  69. 69.
    Kim ER, Chang DK (2014) Colorectal cancer in inflammatory bowel disease: the risk, pathogenesis, prevention and diagnosis. World J Gastroenterol: WJG 20(29):9872PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Klampfer L (2008) The role of signal transducers and activators of transcription in colon cancer. Front Biosci 13:2888–2899PubMedCrossRefGoogle Scholar
  71. 71.
    Kormish JD, Sinner D, Zorn AM (2010) Interactions between SOX factors and Wnt/β-catenin signaling in development and disease. Dev Dyn 239(1):56–68PubMedPubMedCentralGoogle Scholar
  72. 72.
    Krishnamachary B, Berg-Dixon S, Kelly B, Agani F, Feldser D, Ferreira G, …, Semenza GL (2003) Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res 63(5):1138–1143Google Scholar
  73. 73.
    Lassmann S, Schuster I, Walch A, Göbel H, Jütting U, Makowiec F, …, Werner M (2007a) STAT3 mRNA and protein expression in colorectal cancer: effects on STAT3-inducible targets linked to cell survival and proliferation. J Clin Pathol 60(2):173–179CrossRefGoogle Scholar
  74. 74.
    Lassmann S, Weis R, Makowiec F, Roth J, Danciu M, Hopt U, Werner M (2007b) Array CGH identifies distinct DNA copy number profiles of oncogenes and tumor suppressor genes in chromosomal-and microsatellite-unstable sporadic colorectal carcinomas. J Mol Med 85(3):293–304PubMedCrossRefGoogle Scholar
  75. 75.
    Lee TI, Young RA (2013) Transcriptional regulation and its misregulation in disease. Cell 152(6):1237–1251PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Lentjes MH, Niessen HE, Akiyama Y, De Bruine AP, Melotte V, Van Engeland M (2016) The emerging role of GATA transcription factors in development and disease. Expert Rev Mol Med 18Google Scholar
  77. 77.
    Li T, Luo W, Liu K, Lv X, Xi T (2015a) miR-31 promotes proliferation of colon cancer cells by targeting E2F2. Biotechnol Lett 37(3):523–532PubMedCrossRefGoogle Scholar
  78. 78.
    Li W, Thakor N, Xu EY, Huang Y, Chen C, Yu R, …, Kong AN (2009) An internal ribosomal entry site mediates redox-sensitive translation of Nrf2. Nucleic Acids Res gkp1048Google Scholar
  79. 79.
    Li XL, Zhou J, Chen ZR, Chng WJ (2015b) P53 mutations in colorectal cancer-molecular pathogenesis and pharmacological reactivation. World J Gastroenterol 21(1):84–93PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Liang J, Nagahashi M, Kim EY, Harikumar KB, Yamada A, Huang WC, …, Takabe K (2013) Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell 23(1):107–120PubMedCrossRefGoogle Scholar
  81. 81.
    Lind DS, Hochwald SN, Malaty J, Rekkas S, Hebig P, Mishra G, …, MacKay S (2001) Nuclear factor-κB is upregulated in colorectal cancer. Surgery 130(2):363–369PubMedCrossRefGoogle Scholar
  82. 82.
    Liu X, Ji Q, Fan Z, Li Q (2015) Cellular signaling pathways implicated in metastasis of colorectal cancer and the associated targeted agents. Future Oncol 11(21):2911–2922PubMedCrossRefGoogle Scholar
  83. 83.
    Lü B, Fang Y, Xu J, Wang L, Xu F, Xu E, …, Lai M (2008) Analysis of SOX9 expression in colorectal cancer. Am J Clin Pathol 130(6):897–904PubMedCrossRefGoogle Scholar
  84. 84.
    Lundberg IV, Burström AL, Edin S, Eklöf V, Öberg Å, Stenling R, …, Wikberg ML (2014) SOX2 expression is regulated by BRAF and contributes to poor patient prognosis in colorectal cancer. PloS One 9(7):e101957PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Mady HH, Hasso S, Melhem MF (2002) Expression of E2F-4 gene in colorectal adenocarcinoma and corresponding covering mucosa: an immunohistochemistry, image analysis, and immunoblot study. Appl Immunohistochem Mol Morphol 10(3):225–230PubMedPubMedCentralGoogle Scholar
  86. 86.
    Mees C, Nemunaitis J, Senzer N (2009) Transcription factors: their potential as targets for an individualized therapeutic approach to cancer. Cancer Gene Ther 16(2):103–112PubMedCrossRefGoogle Scholar
  87. 87.
    Menegon S, Columbano A, Giordano S (2016) The dual roles of NRF2 in cancer. Trends Mol Med 22(7):578–593CrossRefPubMedGoogle Scholar
  88. 88.
    Milton A, Luoto K, Ingram L, Munro S, Logan N, Graham AL, …, La Thangue NB (2006) A functionally distinct member of the DP family of E2F subunits. Oncogene 25(22):3212–3218PubMedCrossRefGoogle Scholar
  89. 89.
    Nagaraju GP, Bramhachari PV, Raghu G, El-Rayes BF (2015) Hypoxia inducible factor-1α: its role in colorectal carcinogenesis and metastasis. Cancer Lett 366(1):11–18PubMedCrossRefGoogle Scholar
  90. 90.
    Nam SO, Yotsumoto F, Miyata K, Fukagawa S, Yamada H, Kuroki M, Miyamoto S (2015) Warburg effect regulated by amphiregulin in the development of colorectal cancer. Cancer Med 4(4):575–587PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    No JH, Kim YB, Song YS (2014) Targeting nrf2 signaling to combat chemoresistance. J Cancer Prev 19(2):111–117PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Obuch JC, Ahnen DJ (2016) Colorectal cancer: genetics is changing everything. Gastroenterol Clin N Am 45(3):459–476CrossRefGoogle Scholar
  93. 93.
    Palazon A, Goldrath AW, Nizet V, Johnson RS (2014) HIF transcription factors, inflammation, and immunity. Immunity 41(4):518–528PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Paquin MC, Leblanc C, Lemieux E, Bian B, Rivard N (2013) Functional impact of colorectal cancer-associated mutations in the transcription factor E2F4. Int J Oncol 43(6):2015–2022PubMedCrossRefGoogle Scholar
  95. 95.
    Piulats J, Tarrasón G (2001) E2F transcription factors and cancer. Clin Transl Oncol 3(5):241–249Google Scholar
  96. 96.
    Prabhu VV, Hong B, Allen JE, Zhang S, Lulla AR, Dicker DT, El-Deiry WS (2016) Small-molecule prodigiosin restores p53 tumor suppressor activity in chemoresistant colorectal cancer stem cells via c-Jun-mediated ΔNp73 inhibition and p73 activation. Cancer Res 76(7):1989–1999PubMedCrossRefGoogle Scholar
  97. 97.
    Pradhan MP, Prasad NKA, Palakal MJ (2012) A systems biology approach to the global analysis of transcription factors in colorectal cancer. BMC Cancer 12(1):331PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Rawłuszko-Wieczorek AA, Horbacka K, Krokowicz P, Misztal M, Jagodziński PP (2014) Prognostic potential of DNA methylation and transcript levels of HIF1A and EPAS1 in colorectal cancer. Mol Cancer Res 12(8):1112–1127PubMedCrossRefGoogle Scholar
  99. 99.
    Redell MS, Tweardy DJ (2006) Targeting transcription factors in cancer: challenges and evolving strategies. Drug Discov Today Technol 3(3):261–267PubMedCrossRefGoogle Scholar
  100. 100.
    Rinkenbaugh AL, Baldwin AS (2016) The NF-κB pathway and cancer stem cells. Cell 5(2):16CrossRefGoogle Scholar
  101. 101.
    Rochlitz CF, Herrmann R, de Kant E (1996) Overexpression and amplification of c-MYC during progression of human colorectal cancer. Oncology 53(6):448–454PubMedCrossRefGoogle Scholar
  102. 102.
    Sakamoto K, Maeda S (2010) Targeting NF-κB for colorectal cancer. Expert Opin Ther Targets 14(6):593–601PubMedCrossRefGoogle Scholar
  103. 103.
    Sakamoto K, Maeda S, Hikiba Y, Nakagawa H, Hayakawa Y, Shibata W, ..., Omata M (2009) Constitutive NF-κB activation in colorectal carcinoma plays a key role in angiogenesis, promoting tumor growth. Clin Cancer Res 15(7):2248–2258PubMedCrossRefGoogle Scholar
  104. 104.
    Sarkar A, Hochedlinger K (2013) The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 12(1):15–30PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Saw CLL, Kong ANT (2011) Nuclear factor-erythroid 2-related factor 2 as a chemopreventive target in colorectal cancer. Expert Opin Ther Targets 15(3):281–295PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Schwitalla S, Ziegler PK, Horst D, Becker V, Kerle I, Begus-Nahrmann Y, …, Bader FG (2013) Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors. Cancer Cell 23(1):93–106PubMedCrossRefGoogle Scholar
  107. 107.
    Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4(5):E131–E136CrossRefPubMedGoogle Scholar
  108. 108.
    She ZY, Yang WX (2015) SOX family transcription factors involved in diverse cellular events during development. Eur J Cell Biol 94(12):547–563PubMedCrossRefGoogle Scholar
  109. 109.
    Shen F, Li J, Cai W, Zhu G, Gu W, Jia L, Xu B (2013) GATA6 predicts prognosis and hepatic metastasis of colorectal cancer. Oncol Rep 30(3):1355–1361PubMedCrossRefGoogle Scholar
  110. 110.
    Shen Z, Deng H, Fang Y, Zhu X, Ye GT, Yan L, …, Li G (2015) Identification of the interplay between SOX9 and S100P in the metastasis and invasion of colon carcinoma. Oncotarget 6(24):20672Google Scholar
  111. 111.
    Shureiqi I, Zuo X, Broaddus R, Wu Y, Guan B, Morris JS, Lippman SM (2007) The transcription factor GATA-6 is overexpressed in vivo and contributes to silencing 15-LOX-1 in vitro in human colon cancer. FASEB J 21(3):743–753PubMedCrossRefGoogle Scholar
  112. 112.
    Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30CrossRefGoogle Scholar
  113. 113.
    Souza RF, Yin J, Smolinski KN, Zou TT, Wang S, Shi YQ, …, Simms L (1997) Frequent mutation of the E2F-4 cell cycle gene in primary human gastrointestinal tumors. Cancer Res 57(12):2350–2353Google Scholar
  114. 114.
    Spitzner M, Roesler B, Bielfeld C, Emons G, Gaedcke J, Wolff HA, …, Wienands J (2014) STAT3 inhibition sensitizes colorectal cancer to chemoradiotherapy in vitro and in vivo. Int J Cancer 134(4):997–1007PubMedCrossRefGoogle Scholar
  115. 115.
    Sun SC (2011) Non-canonical NF-κB signaling pathway. Cell Res 21(1):71–85PubMedCrossRefGoogle Scholar
  116. 116.
    Suzuki T, Yasui W, Yokozaki H, Naka K, Ishikawa T, Tahara E (1999) Expression of the E2F family in human gastrointestinal carcinomas. Int J Cancer 81(4):535–538PubMedCrossRefGoogle Scholar
  117. 117.
    Takayama T, Miyanishi K, Hayashi T, Sato Y, Niitsu Y (2006) Colorectal cancer: genetics of development and metastasis. J Gastroenterol 41(3):185–192PubMedCrossRefGoogle Scholar
  118. 118.
    Thompson MR, Xu D, Williams BR (2009) ATF3 transcription factor and its emerging roles in immunity and cancer. J Mol Med 87(11):1053–1060PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    To SKY, Zeng WJ, Zeng JZ, Wong AST (2014) Hypoxia triggers a Nur77–β-catenin feed-forward loop to promote the invasive growth of colon cancer cells. Br J Cancer 110(4):935–945PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Triantafillidis JK, Nasioulas G, Kosmidis PA (2009) Colorectal cancer and inflammatory bowel disease: epidemiology, risk factors, mechanisms of carcinogenesis and prevention strategies. Anticancer Res 29(7):2727–2737PubMedPubMedCentralGoogle Scholar
  121. 121.
    Tsantoulis PK, Gorgoulis VG (2005) Involvement of E2F transcription factor family in cancer. Eur J Cancer 41(16):2403–2414CrossRefPubMedGoogle Scholar
  122. 122.
    Vadde R, Vemula S, Jinka R, Merchant N, Bramhachari PV, Nagaraju GP (2017) Role of hypoxia-inducible factors (HIF) in the maintenance of stemness and malignancy of colorectal cancer. Crit Rev Oncol Hematol 113:22–27PubMedCrossRefGoogle Scholar
  123. 123.
    Van Uden P, Kenneth NS, Webster R, Müller HA, Mudie S, Rocha S (2011) Evolutionary conserved regulation of HIF-1β by NF-κB. PLoS Genet 7(1):e1001285PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Verona R, Moberg K, Estes S, Starz M, Vernon JP, Lees JA (1997) E2F activity is regulated by cell cycle-dependent changes in subcellular localization. Mol Cell Biol 17(12):7268–7282PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Voboril R, Weberova-Voborilova J (2005) Constitutive NF-kappaB activity in colorectal cancer cells: impact on radiation-induced NF-kappaB activity, radiosensitivity, and apoptosis. Neoplasma 53(6):518–523Google Scholar
  126. 126.
    Wang B, Li Y, Tan F, Xiao Z (2016) Increased expression of SOX4 is associated with colorectal cancer progression. Tumor Biol 37(7):9131–9137CrossRefGoogle Scholar
  127. 127.
    Wang F, Ma YL, Zhang P, Shen TY, Shi CZ, Yang YZ, …, Qin HL (2013) SP1 mediates the link between methylation of the tumour suppressor miR-149 and outcome in colorectal cancer. J Pathol 229(1):12–24CrossRefGoogle Scholar
  128. 128.
    Wang Q, Qian J, Wang F, Ma Z (2012) Cellular prion protein accelerates colorectal cancer metastasis via the Fyn-SP1-SATB1 axis. Oncol Rep 28(6):2029–2034PubMedCrossRefGoogle Scholar
  129. 129.
    Wang S, Liu Z, Wang L, Zhang X (2009) NF-[kappa] B signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol 6(5):327PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Wegner M (2010) All purpose Sox: the many roles of Sox proteins in gene expression. Int J Biochem Cell Biol 42:381–390PubMedCrossRefGoogle Scholar
  131. 131.
    Weinberg RA (1994) Oncogenes and tumor suppressor genes. CA Cancer J Clin 44(3):160–170PubMedCrossRefGoogle Scholar
  132. 132.
    Wierstra I (2008) Sp1: emerging roles—beyond constitutive activation of TATA-less housekeeping genes. Biochem Biophys Res Commun 372(1):1–13PubMedCrossRefGoogle Scholar
  133. 133.
    Wu H, Lin Y, Li W, Sun Z, Gao W, Zhang H, …, Chen L (2011) Regulation of Nur77 expression by β-catenin and its mitogenic effect in colon cancer cells. FASEB J 25(1):192–205PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Wu ZY, Wei ZM, Sun SJ, Yuan J, Jiao SC (2014) Activating transcription factor 3 promotes colon cancer metastasis. Tumor Biol 35(8):8329CrossRefGoogle Scholar
  135. 135.
    Xanthoulis A, Tiniakos DG (2013) E2F transcription factors and digestive system malignancies: how much do we know? World J Gastroenterol: WJG 19(21):3189PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Xanthoulis A, Kotsinas A, Tiniakos D, Kittas C, Gorgoulis V (2012) The relationship between E2F family members and tumor growth in colorectal adenocarcinomas: a comparative immunohistochemical study of 100 cases. Proteins 8(10):17–21Google Scholar
  137. 137.
    Xu K, Wang J, Gao J, Di J, Jiang B, Chen L, …, Shen L (2016) GATA binding protein 2 overexpression is associated with poor prognosis in KRAS mutant colorectal cancer. Oncol Rep 36(3):1672–1678PubMedCrossRefGoogle Scholar
  138. 138.
    Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H, …, Nakayama KI (2004) Phosphorylation-dependent degradation of c-MYC is mediated by the F-box protein Fbw7. EMBO J 23(10):2116–2125PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Yan C, Higgins PJ (2013) Drugging the undruggable: transcription therapy for cancer. Biochim Biophys Acta (BBA)-Rev Cancer 1835(1):76–85CrossRefGoogle Scholar
  140. 140.
    Yasui W, Fujimoto J, Suzuki T, Ono S, Naka K, Yokozaki H, Tahara E (1999) Expression of cell-cycle-regulating transcription factor E2F-1 in colorectal carcinomas. Pathobiology 67(4):174–179PubMedCrossRefGoogle Scholar
  141. 141.
    Yeh JE, Toniolo PA, Frank DA (2013) Targeting transcription factors: promising new strategies for cancer therapy. Curr Opin Oncol 25(6):652–658PubMedCrossRefGoogle Scholar
  142. 142.
    Yoshitaka T, Matsubara N, Ikeda M, Tanino M, Hanafusa H, Tanaka N, Shimizu K (1996) Mutations of E2F-4 trinucleotide repeats in colorectal cancer with microsatellite instability. Biochem Biophys Res Commun 227(2):553–557PubMedCrossRefGoogle Scholar
  143. 143.
    Yu MH, Zhang W (2016) TEAD1 enhances proliferation via activating SP1 in colorectal cancer. Biomed Pharmacother 83:496–501PubMedCrossRefGoogle Scholar
  144. 144.
    Zhang W, Hart J, McLeod HL, Wang HL (2005) Differential expression of the AP-1 transcription factor family members in human colorectal epithelial and neuroendocrine neoplasms. Am J Clin Pathol 124(1):11–19PubMedCrossRefGoogle Scholar
  145. 145.
    Zhang Y, Huang S, Dong W, Li L, Feng Y, Pan L, …, Huang B (2009) SOX7, down-regulated in colorectal cancer, induces apoptosis and inhibits proliferation of colorectal cancer cells. Cancer Lett 277(1):29–37PubMedCrossRefGoogle Scholar
  146. 146.
    Zheng R, Blobel GA (2010) GATA transcription factors and cancer. Genes Cancer 1(12):1178–1188PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd 2017

Authors and Affiliations

  • Uday Sankar Allam
    • 1
  • Shilpa Kamatham
    • 1
  • Maraline Adarsha
    • 1
  • Sk. Md. Jasmine
    • 1
  • P. V. Giri Prasad
    • 2
  1. 1.Department of BiotechnologyVikrama Simhapuri UniversityNelloreIndia
  2. 2.Damien TB Research CentreNelloreIndia

Personalised recommendations