Disorders with Deficiency in TC-NER: Molecular Pathogenesis of Cockayne Syndrome and UV-Sensitive Syndrome

  • Chaowan Guo
  • Tomoo OgiEmail author


Nucleotide excision repair (NER) is one of the most important DNA repair systems involved in removing a wide range of DNA damage from the genome. NER consists of two sub-pathways: the global genome nucleotide excision repair (GG-NER) pathway, which removes DNA lesions generated in the whole genome (as described in Chap.  1 of this book), and the transcription-coupled nucleotide excision repair (TC-NER) pathway, which removes lesions specifically from the transcribed strands of actively transcribed genes. At least 20 factors are involved in the TC-NER process, and mutations in the genes responsible for coding these factors may mainly result in two human genetic disorders: Cockayne syndrome (CS) and UV-sensitive syndrome (UVSS). Despite similar molecular defects in TC-NER, CS and UVSS show distinct clinical phenotypes. CS patients display severe developmental and neurological abnormalities as well as premature ageing, whereas UVSS individuals only show milder cutaneous abnormalities, such as hypersensitivity to UV light. The molecular basis for the difference in the clinical features remains unclear. In this chapter, we will specifically describe the historical progress and recent findings of TC-NER and summarize the current understanding of the molecular pathogenesis of CS and UVSS.


  1. 1.
    Friedberg EC, et al. DNA repair: from molecular mechanism to human disease. DNA Repair (Amst). 2006;5(8):986–96.CrossRefGoogle Scholar
  2. 2.
    Gates KS. An overview of chemical processes that damage cellular DNA: spontaneous hydrolysis, alkylation, and reactions with radicals. Chem Res Toxicol. 2009;22:1747–60.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Hoeijmakers JH. DNA damage, aging, and cancer. N Engl J Med. 2009;361:1475–85.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411:366–74.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Scharer OD. Nucleotide excision repair in eukaryotes. Cold Spring Harb Perspect Biol. 2013;5:a012609.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Gillet LC, Scharer OD. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev. 2006;106(2):253–76.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Hanawalt PC, Spivak G. Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol. 2008;9:958–70.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Vermeulen W, Fousteri M. Mammalian transcription-coupled excision repair. Cold Spring Harb Perspect Biol. 2013;5:a012625.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Lehmann AR. DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Biochimie. 2003;85(11):1101–11.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Mayne LV, Lehmann AR. Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne’s syndrome and xeroderma pigmentosum. Cancer Res. 1982;42:1473–8.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Bohr VA, et al. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell. 1985;40(2):359–69.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Bohr VA, Phillips DH, Hanawalt PC. Heterogeneous DNA damage and repair in the mammalian genome. Cancer Res. 1987;47(24 Pt 1):6426–36.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Ljungman M, Lane DP. Transcription [mdash] guarding the genome by sensing DNA damage. Nat Rev Cancer. 2004;4:727–37.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Mellon I, Hanawalt PC. Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand. Nature. 1989;342(6245):95–8.CrossRefGoogle Scholar
  15. 15.
    Leadon SA, Lawrence DA. Strand-selective repair of DNA damage in the yeast GAL7 gene requires RNA polymerase II. J Biol Chem. 1992;267(32):23175–82.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Sweder KS, Hanawalt PC. Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription. Proc Natl Acad Sci U S A. 1992;89(22):10696–700.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Mellon I, Spivak G, Hanawalt PC. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell. 1987;51(2):241–9.CrossRefGoogle Scholar
  18. 18.
    Leadon SA, Lawrence DA. Preferential repair of DNA damage on the transcribed strand of the human metallothionein genes requires RNA polymerase II. Mutat Res. 1991;255(1):67–78.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Sugasawa K. A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev. 2001;15:507–21.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Stevnsner T, et al. The role of Cockayne syndrome group B (CSB) protein in base excision repair and aging. Mech Ageing Dev. 2008;129:441–8.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Zhang X. Mutations in UVSSA cause UV sensitive syndrome and destabilize ERCC6 in transcription-coupled DNA repair. Nat Genet. 2012;44:593–7.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Schwertman P. UV sensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair. Nat Genet. 2012;44:598–602.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Nakazawa Y. Mutations in UVSSA cause UV sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair. Nat Genet. 2012;44:586–92.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Fagbemi AF, Orelli B, Scharer OD. Regulation of endonuclease activity in human nucleotide excision repair. DNA Repair. 2011;10:722–9.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Cockayne EA. Dwarfism with retinal atrophy and deafness. Arch Dis Child. 1936;11(61):1–8.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Laugel V. Cockayne syndrome: the expanding clinical and mutational spectrum. Mech Ageing Dev. 2013;134:161–70.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Cleaver JE, Thomas GH. Clinical syndromes associated with DNA repair deficiency and enhanced sun sensitivity. Arch Dermatol. 1993;129:348–50.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Nance MA, Berry SA. Cockayne syndrome: review of 140 cases. Am J Med Genet. 1992;42(1):68–84.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Berneburg M, Lehmann AR. Xeroderma pigmentosum and related disorders: defects in DNA repair and transcription. Adv Genet. 2001;43:71–102.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Kraemer KH, et al. Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype-phenotype relationship. Neuroscience. 2007;145(4):1388–96.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kashiyama K, et al. Malfunction of nuclease ERCC1-XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia. Am J Hum Genet. 2013;92(5):807–19.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Spivak G. UV sensitive syndrome. Mutat Res. 2005;577:162–9.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Fujiwara Y, et al. A new human photosensitive subject with a defect in the recovery of DNA synthesis after ultraviolet-light irradiation. J Investig Dermatol. 1981;77:256–63.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Itoh T, Ono T, Yamaizumi M. A new UV-sensitive syndrome not belonging to any complementation groups of xeroderma pigmentosum or Cockayne syndrome: siblings showing biochemical characteristics of Cockayne syndrome without typical clinical manifestations. Mutat Res. 1994;314:233–48.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Itoh T, et al. UVs syndrome, a new general category of photosensitive disorder with defective DNA repair, is distinct from xeroderma pigmentosum variant and rodent complementation group I. Am J Hum Genet. 1995;56:1267–76.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Nardo T. A UV sensitive syndrome patient with a specific CSA mutation reveals separable roles for CSA in response to UV and oxidative DNA damage. Proc Natl Acad Sci U S A. 2009;106:6209–14.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Horibata K. Complete absence of Cockayne syndrome group B gene product gives rise to UV sensitive syndrome but not Cockayne syndrome. Proc Natl Acad Sci U S A. 2004;101:15410–5.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Lehmann AR, Stevens S. A rapid procedure for measurement of DNA repair in human fibroblasts and for complementation analysis of xeroderma pigmentosum cells. Mutat Res. 1980;69(1):177–90.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Ayaki H, Hara R, Ikenaga M. Recovery from ultraviolet tight-induced depression of ribosomal RNA synthesis in normal human, xeroderma pigmentosum and Cockayne syndrome cells. J Radiat Res. 1996;37(2):107–16.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Christians FC, Hanawalt PC. Lack of transcription-coupled repair in mammalian ribosomal RNA genes. Biochemistry. 1993;32(39):10512–8.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl. 2001;40(11):2004–21.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Jia N, et al. A rapid, comprehensive system for assaying DNA repair activity and cytotoxic effects of DNA-damaging reagents. Nat Protoc. 2015;10(1):12–24.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Limsirichaikul S, et al. A rapid non-radioactive technique for measurement of repair synthesis in primary human fibroblasts by incorporation of ethynyl deoxyuridine (EdU). Nucleic Acids Res. 2009;37(4):e31.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Nakazawa Y, et al. A semi-automated non-radioactive system for measuring recovery of RNA synthesis and unscheduled DNA synthesis using ethynyluracil derivatives. DNA Repair (Amst). 2010;9:506–16.CrossRefGoogle Scholar
  45. 45.
    Li S. Implication of posttranslational histone modifications in nucleotide excision repair. Int J Mol Sci. 2012;13(10):12461–86.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Henning KA, et al. The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell. 1995;82(4):555–64.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Itoh T, et al. Rodent complementation group 8 (ERCC8) corresponds to Cockayne syndrome complementation group A. Mutat Res. 1996;362(2):167–74.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Zhou HX, Wang G. Predicted structures of two proteins involved in human diseases. Cell Biochem Biophys. 2001;35(1):35–47.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Xu C, Min J. Structure and function of WD40 domain proteins. Protein Cell. 2011;2(3):202–14.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Fei J, Chen J. KIAA1530 protein is recruited by Cockayne syndrome complementation group protein A (CSA) to participate in transcription-coupled repair (TCR). J Biol Chem. 2012;287:35118–26.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Groisman R. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell. 2003;113:357–67.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Nakatsu Y, et al. XAB2, a novel tetratricopeptide repeat protein involved in transcription-coupled DNA repair and transcription. J Biol Chem. 2000;275(45):34931–7.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Troelstra C, et al. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne’s syndrome and preferential repair of active genes. Cell. 1992;71(6):939–53.CrossRefGoogle Scholar
  54. 54.
    Christiansen M, et al. Functional consequences of mutations in the conserved SF2 motifs and post-translational phosphorylation of the CSB protein. Nucleic Acids Res. 2003;31(3):963–73.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    de Waard H, et al. Different effects of CSA and CSB deficiency on sensitivity to oxidative DNA damage. Mol Cell Biol. 2004;24:7941–8.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Aamann MD, et al. Cockayne syndrome group B protein promotes mitochondrial DNA stability by supporting the DNA repair association with the mitochondrial membrane. FASEB J. 2010;24(7):2334–46.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Laugel V, et al. Mutation update for the CSB/ERCC6 and CSA/ERCC8 genes involved in Cockayne syndrome. Hum Mutat. 2010;31(2):113–26.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Jin J, et al. A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol Cell. 2006;23(5):709–21.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Lohi O, et al. VHS domain -- a longshoreman of vesicle lines. FEBS Lett. 2002;513(1):19–23.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Dikic I, Wakatsuki S, Walters KJ. Ubiquitin-binding domains - from structures to functions. Nat Rev Mol Cell Biol. 2009;10(10):659–71.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Higa M, et al. Stabilization of ultraviolet (UV)-stimulated scaffold protein a by interaction with ubiquitin-specific peptidase 7 is essential for transcription-coupled nucleotide excision repair. J Biol Chem. 2016;291(26):13771–9.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    de Laat WL, Jaspers NG, Hoeijmakers JH. Molecular mechanism of nucleotide excision repair. Genes Dev. 1999;13(7):768–85.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Petruseva IO, Evdokimov AN, Lavrik OI. Molecular mechanism of global genome nucleotide excision repair. Acta Nat. 2014;6(1):23–34.Google Scholar
  64. 64.
    Epshtein V, et al. UvrD facilitates DNA repair by pulling RNA polymerase backwards. Nature. 2014;505(7483):372–7.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Selby CP, Sancar A. Molecular mechanism of transcription-repair coupling. Science. 1993;260(5104):53–8.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Laine JP, Egly JM. When transcription and repair meet: a complex system. Trends Genet. 2006;22(8):430–6.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Fousteri M, Mullenders LH. Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects. Cell Res. 2008;18(1):73–84.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Ramanathan B, Smerdon MJ. Enhanced DNA repair synthesis in hyperacetylated nucleosomes. J Biol Chem. 1989;264(19):11026–34.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Lim JH, et al. Chromosomal protein HMGN1 enhances the acetylation of lysine 14 in histone H3. EMBO J. 2005;24(17):3038–48.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Fousteri M, et al. Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo. Mol Cell. 2006;23(4):471–82.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Lukas J, Lukas C, Bartek J. More than just a focus: the chromatin response to DNA damage and its role in genome integrity maintenance. Nat. Cell Biol. 2011;13:1161–9.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Kamiuchi S, et al. Translocation of Cockayne syndrome group A protein to the nuclear matrix: possible relevance to transcription-coupled DNA repair. Proc Natl Acad Sci U S A. 2002;99(1):201–6.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Groisman R. CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome. Genes Dev. 2006;20:1429–34.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Bregman DB. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. Proc Natl Acad Sci U S A. 1996;93:11586–90.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Mullenders L. DNA damage mediated transcription arrest: step back to go forward. DNA Repair (Amst). 2015;36:28–35.CrossRefGoogle Scholar
  76. 76.
    Capell BC, Tlougan BE, Orlow SJ. From the rarest to the most common: insights from progeroid syndromes into skin cancer and aging. J Investig Dermatol. 2009;129(10):2340–50.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Andressoo JO. An Xpb mouse model for combined xeroderma pigmentosum and Cockayne syndrome reveals progeroid features upon further attenuation of DNA repair. Mol Cell Biol. 2009;29:1276–90.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Tsutakawa SE, Cooper PK. Transcription-coupled repair of oxidative DNA damage in human cells: mechanisms and consequences. Cold Spring Harb Symp Quant Biol. 2000;65:201–15.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Trapp C, et al. Deficiency of the Cockayne syndrome B (CSB) gene aggravates the genomic instability caused by endogenous oxidative DNA base damage in mice. Oncogene. 2007;26(27):4044–8.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    D’Errico M, et al. The role of CSA in the response to oxidative DNA damage in human cells. Oncogene. 2007;26(30):4336–43.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Menoni H, Hoeijmakers JH, Vermeulen W. Nucleotide excision repair-initiating proteins bind to oxidative DNA lesions in vivo. J Cell Biol. 2012;199:1037–46.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Hoeijmakers JH. Genome maintenance mechanisms are critical for preventing cancer as well as other aging-associated diseases. Mech Ageing Dev. 2007;128(7–8):460–2.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Spivak G, Hanawalt PC. Host cell reactivation of plasmids containing oxidative DNA lesions is defective in Cockayne syndrome but normal in UV-sensitive syndrome fibroblasts. DNA Repair (Amst). 2006;5:13–22.CrossRefGoogle Scholar
  84. 84.
    Citterio E. ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor. Mol Cell Biol. 2000;20:7643–53.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    van den Boom V, et al. DNA damage stabilizes interaction of CSB with the transcription elongation machinery. J Cell Biol. 2004;166(1):27–36.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Villard J. Transcription regulation and human diseases. Swiss Med Wkly. 2004;134(39–40):571–9.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Svejstrup JQ. Mechanisms of transcription-coupled DNA repair. Nat Rev Mol Cell Biol. 2002;3(1):21–9.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Tornaletti S, Reines D, Hanawalt PC. Structural characterization of RNA polymerase II complexes arrested by a cyclobutane pyrimidine dimer in the transcribed strand of template DNA. J Biol Chem. 1999;274(34):24124–30.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Sahoo M, Klumpp S. Backtracking dynamics of RNA polymerase: pausing and error correction. J Phys Condens Matter. 2013;25(37):374104.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Sigurdsson S, Dirac-Svejstrup AB, Svejstrup JQ. Evidence that transcript cleavage is essential for RNA polymerase II transcription and cell viability. Mol Cell. 2010;38(2):202–10.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Jensen A, Mullenders LH. Transcription factor IIS impacts UV-inhibited transcription. DNA Repair (Amst). 2010;9(11):1142–50.CrossRefGoogle Scholar
  92. 92.
    van Cuijk L, Vermeulen W, Marteijn JA. Ubiquitin at work: the ubiquitous regulation of the damage recognition step of NER. Exp Cell Res. 2014;329(1):101–9.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Starita LM. BRCA1/BARD1 ubiquitinate phosphorylated RNA polymerase II. J Biol Chem. 2005;280:24498–505.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Anindya R, Aygun O, Svejstrup JQ. Damage-induced ubiquitylation of human RNA polymerase II by the ubiquitin ligase Nedd4, but not Cockayne syndrome proteins or BRCA1. Mol Cell. 2007;28:386–97.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Wilson MD, Harreman M, Svejstrup JQ. Ubiquitylation and degradation of elongating RNA polymerase II: the last resort. Biochim Biophys Acta. 2013;1829:151–7.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of GeneticsResearch Institute of Environmental Medicine (RIEM), Nagoya UniversityNagoyaJapan
  2. 2.Department of Human Genetics and Molecular BiologyGraduate School of Medicine, Nagoya UniversityNagoyaJapan

Personalised recommendations