Advertisement

Ataxia-Telangiectasia and Nijmegen Breakage Syndrome

  • Junya KobayashiEmail author
Chapter

Abstract

Ataxia-telangiectasia (A-T) and Nijmegen breakage syndrome (NBS) are well-known single-gene disorders, which have similar cellular phenotypes, including chromosome instability, radioresistant DNA synthesis, and hypersensitivity to radiation. Such phenotypic similarity implies direct physical association and/or functional interaction between respective gene products. Indeed, the NBS1 protein responsible for NBS interacts with ATM kinase implicated in A-T and regulates ATM activation upon DNA damage; however, NBS1-mediated homologous recombination does not seem to require ATM. Moreover, ATM is activated by oxidative stress independently of NBS1. Thus, ATM and NBS1 are likely to have distinct functions in radiation-induced DNA damage responses or other cellular responses to genomic stresses such as oxidative stress, which should underlie different clinical manifestations of A-T and NBS.

References

  1. 1.
    Boder E, Sedgwick RP. Ataxia-telangiectasia; a familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection. Pediatrics. 1958;21:526–54.PubMedGoogle Scholar
  2. 2.
    Gotoff SP, Amirmokri E, Liebner EJ. Ataxia telangiectasia. Neoplasia, untoward response to x-irradiation, and tuberous sclerosis. Am J Dis Child. 1967;114:617–25.CrossRefGoogle Scholar
  3. 3.
    McKinnon PJ. Ataxia-telangiectasia: an inherited disorder of ionizing-radiation sensitivity in man. Progress in the elucidation of the underlying biochemical defect. Hum Genet. 1987;75:197–208.CrossRefGoogle Scholar
  4. 4.
    Shiloh Y. Ataxia-telangiectasia: closer to unraveling the mystery. Eur J Hum Genet. 1995;3:116–38.CrossRefGoogle Scholar
  5. 5.
    Shiloh Y. Ataxia-telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart. Annu Rev Genet. 1997;31:635–62.CrossRefGoogle Scholar
  6. 6.
    Hustinx TW, Scheres JM, Weemaes CM, et al. Karyotype instability with multiple 7/14 and 7/7 rearrangements. Hum Genet. 1979;49:199–208.CrossRefGoogle Scholar
  7. 7.
    Weemaes CM, Hustinx TW, Scheres JM, et al. A new chromosomal instability disorder: the Nijmegen breakage syndrome. Acta Paediatr Scand. 2000;70:557–64.CrossRefGoogle Scholar
  8. 8.
    The International Nijmegen Breakage Syndrome Study Group. Nijmegen breakage syndrome. Arch Dis Child. 2000;82:400–6.CrossRefGoogle Scholar
  9. 9.
    Chrzanowska KH, Gregorek H, Dembowska-Bagińska B, et al. Nijmegen breakage syndrome (NBS). Orphanet J Rare Dis. 2012;7:e13.CrossRefGoogle Scholar
  10. 10.
    Stewart GS, Maser RS, Stankovic T, et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell. 1999;99:577–87.CrossRefGoogle Scholar
  11. 11.
    Taylor AM, Groom A, Byrd PJ. Ataxia-telangiectasia-like disorder (ATLD)-its clinical presentation and molecular basis. DNA Repair (Amst). 2004;3:1219–25.CrossRefGoogle Scholar
  12. 12.
    Hernandez D, McConville CM, Stacey M, et al. A family showing no evidence of linkage between the ataxia telangiectasia gene and chromosome 1q22-23. J Med Genet. 1993;30:135–40.CrossRefGoogle Scholar
  13. 13.
    Savitsky K, Bar-Shira A, Gilad S, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995;268:1749–53.CrossRefGoogle Scholar
  14. 14.
    Shiloh Y, Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol. 2013;14:197–210.CrossRefGoogle Scholar
  15. 15.
    Lovejoy CA, Cortez D. Common mechanisms of PIKK regulation. DNA Repair. 2009;8:1004–8.CrossRefGoogle Scholar
  16. 16.
    Kong X, Shen Y, Jiang N, et al. Emerging roles of DNA-PK besides DNA repair. Cell Signal. 2011;23:1273–80.CrossRefGoogle Scholar
  17. 17.
    Nam EA, Cortez D. ATR signalling: more than meeting at the fork. Biochem J. 2011;436:527–36.CrossRefGoogle Scholar
  18. 18.
    Gobbini E, Cesena D, Galbiati A, et al. Interplays between ATM/Tel1 and ATR/Mec1 in sensing and signaling DNA double-strand breaks. DNA Repair (Amst). 2013;12:791–9.CrossRefGoogle Scholar
  19. 19.
    Matsuura S, Tauchi H, Nakamura A, et al. Positional cloning of the gene for Nijmegen breakage syndrome. Nat Genet. 1998;19:179–81.CrossRefGoogle Scholar
  20. 20.
    Tauchi H, Matsuura S, Kobayashi J, et al. Nijmegen breakage syndrome gene, NBS1, and molecular links to factors for genome stability. Oncogene. 2002;21:8967–80.CrossRefGoogle Scholar
  21. 21.
    Chamankhah M, Wei YF, Xiao W. Isolation of hMRE11B: failure to complement yeast mre11 defects due to species-specific protein interactions. Gene. 1998;225:107–16.CrossRefGoogle Scholar
  22. 22.
    Tauchi H, Kobayashi J, Morishima K, et al. The forkhead-associated domain of NBS1 is essential for nuclear foci formation after irradiation but not essential for hRAD50 hMRE11 NBS1 complex DNA repair activity. J Biol Chem. 2001;276:12–5.CrossRefGoogle Scholar
  23. 23.
    Barbi G, Scheres JMJC, Schindler D, et al. Chromosome instability and X-ray hypersensitivity in a microcephalic and growth-retarded child. Am J Med Genet. 1991;40:44–50.CrossRefGoogle Scholar
  24. 24.
    Thompson LH. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res. 2012;751:158–246.CrossRefGoogle Scholar
  25. 25.
    Fujimori A, Tachiiri S, Sonoda E, et al. Rad52 partially substitutes for the Rad51 paralog XRCC3 in maintaining chromosomal integrity in vertebrate cells. EMBO J. 2001;20:5513–20.CrossRefGoogle Scholar
  26. 26.
    Tauchi H, Kobayashi J, Morishima K, et al. Nbs1 is essential for DNA repair by homologous recombination in higher vertebrate cells. Nature. 2002;420:93–8.CrossRefGoogle Scholar
  27. 27.
    Khanna KK, Beamish H, Yan J, et al. Nature of G1/S cell cycle checkpoint defect in ataxia-telangiectasia. Oncogene. 1995;11:609–18.PubMedGoogle Scholar
  28. 28.
    Beamish H, Williams R, Chen P, et al. Defect in multiple cell cycle checkpoints in ataxia-telangiectasia postirradiation. J Biol Chem. 1996;271:20486–93.CrossRefGoogle Scholar
  29. 29.
    Banin S, Moyal L, Shieh S, et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science. 1998;281:1674–7.CrossRefGoogle Scholar
  30. 30.
    Canman CE, Lim DS, Cimprich KA, et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science. 1998;281:1677–9.CrossRefGoogle Scholar
  31. 31.
    Matsuoka S, Ballif BA, Smogorzewska A, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316:1160–6.CrossRefGoogle Scholar
  32. 32.
    Lim DS, Kim ST, Xu B, et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature. 2000;404:613–7.CrossRefGoogle Scholar
  33. 33.
    Zhao S, Weng YC, Yuan SS, et al. Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature. 2000;405:473–7.CrossRefGoogle Scholar
  34. 34.
    Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 2003;421:499–506.CrossRefGoogle Scholar
  35. 35.
    Falck J, Coates J, Jackson SP. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature. 2005;434:605–11.CrossRefGoogle Scholar
  36. 36.
    Crawford TO. Ataxia telangiectasia. Semin Pediatr Neurol. 1998;5:287–94.CrossRefGoogle Scholar
  37. 37.
    Shiloh Y, Lederman HM. Ataxia-telangiectasia (A-T): an emerging dimension of premature ageing. Ageing Res Rev. 2016;33:76–88. pii: S1568-1637(16)30078-30082.CrossRefGoogle Scholar
  38. 38.
    Gatti RA, Vinters HV. Cerebellar pathology in ataxia-telangiectasia: the significance of basket cells. Kroc Found Ser. 1985;19:225–32.PubMedGoogle Scholar
  39. 39.
    Lavin MF. The appropriateness of the mouse model for ataxia-telangiectasia: neurological defects but no neurodegeneration. DNA Repair (Amst). 2013;12:612–9.CrossRefGoogle Scholar
  40. 40.
    Carlessi L, Fusar Poli E, De Filippis L, et al. ATM-deficient human neural stem cells as an in vitro model system to study neurodegeneration. DNA Repair (Amst). 2013;12:605–11.CrossRefGoogle Scholar
  41. 41.
    Reichenbach J, Schubert R, Schindler D, et al. Elevated oxidative stress in patients with ataxia telangiectasia. Antioxid Redox Signal. 2002;4:465–9.CrossRefGoogle Scholar
  42. 42.
    Kamsler A, Daily D, Hochman A, et al. Increased oxidative stress in ataxia telangiectasia evidenced by alterations in redox state of brains from Atm-deficient mice. Cancer Res. 2001;61:1849–54.PubMedGoogle Scholar
  43. 43.
    Guo Z, Kozlov S, Lavin MF, et al. ATM activation by oxidative stress. Science. 2010;330:517–21.CrossRefGoogle Scholar
  44. 44.
    Zhang J, Kim J, Alexander A, et al. A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nat Cell Biol. 2013;15:1186–96.CrossRefGoogle Scholar
  45. 45.
    Zhang J, Tripathi DN, Jing J, et al. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat Cell Biol. 2015;17:1259–69.CrossRefGoogle Scholar
  46. 46.
    Valentin-Vega YA, Maclean KH, Tait-Mulder J, et al. Mitochondrial dysfunction in ataxia-telangiectasia. Blood. 2012;119:1490–500.CrossRefGoogle Scholar
  47. 47.
    Valentin-Vega YA, Kastan MB. A new role for ATM: regulating mitochondrial function and mitophagy. Autophagy. 2012;8:840–1.CrossRefGoogle Scholar
  48. 48.
    Ambrose M, Goldstine JV, Gatti RA. Intrinsic mitochondrial dysfunction in ATM-deficient lymphoblastoid cells. Hum Mol Genet. 2007;16:2154–64.CrossRefGoogle Scholar
  49. 49.
    Gatti RA, Bick M, Tam CF, et al. Ataxia-telangiectasia: a multiparameter analysis of eight families. Clin Immunol Immunopathol. 1982;23:501–16.CrossRefGoogle Scholar
  50. 50.
    Nowak-Wegrzyn A, Crawford TO, Winkelstein JA, et al. Immunodeficiency and infections in ataxia-telangiectasia. J Pediatr. 2004;144:505–11.CrossRefGoogle Scholar
  51. 51.
    Taylor AM, Metcalfe JA, Thick J, et al. Leukemia and lymphoma in ataxia telangiectasia. Blood. 1996;87:423–38.PubMedGoogle Scholar
  52. 52.
    Isoda T, Takagi M, Piao J, et al. Process for immune defect and chromosomal translocation during early thymocyte development lacking ATM. Blood. 2012;120:789–99.CrossRefGoogle Scholar
  53. 53.
    Dujka ME, Puebla-Osorio N, Tavana O, et al. ATM and p53 are essential in the cell- cycle containment of DNA breaks during V(D)J recombination in vivo. Oncogene. 2010;29:957–65.CrossRefGoogle Scholar
  54. 54.
    Murphy RC, Berdon WE, Ruzal-Shapiro C, et al. Malignancies in pediatric patients with ataxia telangiectasia. Pediatr Radiol. 1999;29:225–30.CrossRefGoogle Scholar
  55. 55.
    Olsen JH, Hahnemann JM, Borresen-Dale AL, et al. Cancer in patients with ataxia-telangiectasia and in their relatives in the Nordic countries. J Natl Cancer Inst. 2001;93:121–7.CrossRefGoogle Scholar
  56. 56.
    Bartkova J, Rezaei N, Liontos M, et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 2006;444:633–7.CrossRefGoogle Scholar
  57. 57.
    Schubert R, Reichenbach J, Zielen S. Growth factor deficiency in patients with ataxia telangiectasia. Clin Exp Immunol. 2005;140:517–9.CrossRefGoogle Scholar
  58. 58.
    Yang DQ, Kastan MB. Participation of ATM in insulin signalling through phosphorylation of eIF-4E-binding protein 1. Nat Cell Biol. 2000;2:893–8.CrossRefGoogle Scholar
  59. 59.
    Miles PD, Treuner K, Latronica M, et al. Impaired insulin secretion in a mouse model of ataxia telangiectasia. Am J Physiol Endocrinol Metab. 2007;293:E70–4.CrossRefGoogle Scholar
  60. 60.
    Wu D, Yang H, Xiang W, et al. Heterozygous mutation of ataxia-telangiectasia mutated gene aggravates hypercholesterolemia in apoE-deficient mice. J Lipid Res. 2005;46:1380–7.CrossRefGoogle Scholar
  61. 61.
    Schneider JG, Finck BN, Ren J, et al. ATM-dependent suppression of stress signaling reduces vascular disease in metabolic syndrome. Cell Metab. 2006;4:377–89.CrossRefGoogle Scholar
  62. 62.
    Takagi M, Uno H, Nishi R, et al. ATM regulates adipocyte differentiation and contributes to glucose homeostasis. Cell Rep. 2015;10:957–67.CrossRefGoogle Scholar
  63. 63.
    Nakamura K, Kato A, Kobayashi J, et al. Regulation of homologous recombination by RNF20-dependent H2B ubiquitination. Mol Cell. 2011;41:515–28.CrossRefGoogle Scholar
  64. 64.
    Sakamoto S, Iijima K, Mochizuki D, et al. Homologous recombination repair is regulated by domains at the N- and C-terminus of NBS1 and is dissociated with ATM functions. Oncogene. 2007;26:6002–9.CrossRefGoogle Scholar
  65. 65.
    Kass EM, Helgadottir HR, Chen CC, et al. Double-strand break repair by homologous recombination in primary mouse somatic cells requires BRCA1 but not the ATM kinase. Proc Natl Acad Sci U S A. 2013;110:5564–9.CrossRefGoogle Scholar
  66. 66.
    Kijas AW, Lim YC, Bolderson E, et al. ATM-dependent phosphorylation of MRE11 controls extent of resection during homology directed repair by signalling through exonuclease 1. Nucleic Acids Res. 2015;43:8352–67.CrossRefGoogle Scholar
  67. 67.
    Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science. 2003;300:1542–8.CrossRefGoogle Scholar
  68. 68.
    Shiotani B, Nguyen HD, Håkansson P, et al. Two distinct modes of ATR activation orchestrated by Rad17 and Nbs1. Cell Rep. 2013;3:1651–162.CrossRefGoogle Scholar
  69. 69.
    Morishima K, Sakamoto S, Kobayashi J, et al. TopBP1 associates with NBS1 and is involved in homologous recombination repair. Biochem Biophys Res Commun. 2007;362:872–9.CrossRefGoogle Scholar
  70. 70.
    Cox J, Jackson AP, Bond J, et al. What primary microcephaly can tell us about brain growth. Trends Mol Med. 2006;12:358–66.CrossRefGoogle Scholar
  71. 71.
    Zhang B, Wang E, Dai H, et al. Phosphorylation of the BRCA1 C terminus (BRCT) repeat inhibitor of hTERT (BRIT1) protein coordinates TopBP1 protein recruitment and amplifies ataxia telangiectasia-mutated and Rad3-related (ATR) signaling. J Biol Chem. 2014;289:34284–95.CrossRefGoogle Scholar
  72. 72.
    Shimada M, Sagae R, Kobayashi J, et al. Inactivation of the Nijmegen breakage syndrome gene leads to excess centrosome duplication via the ATR/BRCA1 pathway. Cancer Res. 2009;69:1768–75.CrossRefGoogle Scholar
  73. 73.
    Yanagihara H, Kobayashi J, Tateishi S, et al. NBS1 recruits RAD18 via a RAD6-like domain and regulates pol η-dependent translesion DNA synthesis. Mol Cell. 2011;43:788–97.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Radiation Biology CenterGraduate School of Biostudies, Kyoto UniversityKyotoJapan

Personalised recommendations