Advertisement

Molecular Mechanism of DNA Damage Recognition for Global Genomic Nucleotide Excision Repair: A Defense System Against UV-Induced Skin Cancer

  • Kaoru SugasawaEmail author
Chapter

Abstract

Nucleotide excision repair (NER) is a versatile DNA repair pathway responsible for removal of ultraviolet light (UV)-induced DNA photolesions from the genome. In mammals, NER operating throughout the genome decreases the risk of UV-induced mutagenesis arising due to DNA translesion synthesis across photolesions on template DNA strands and thereby contributes to suppression of skin cancer. Lesion recognition for global genomic NER relies on multiple xeroderma pigmentosum (XP)-related protein factors, XPC, UV-DDB, TFIIH, and XPA, each of which probes for a different aspect of abnormal DNA structure. A combination of diverse strategies is likely required to achieve the broad substrate specificity, efficiency, and accuracy of this DNA repair system. To regulate this elaborate system in vivo, post-translational protein modifications, such as ubiquitination, and higher-order chromatin structures also play important roles.

Keywords

Nucleotide excision repair Xeroderma pigmentosum DNA damage recognition XPC UV-DDB Transcription factor IIH (TFIIH) XPA Ubiquitination Chromatin Histone 

Notes

Acknowledgments

The author’s work was supported by Grants-in-Aid from the Japan Society for the Promotion of Science (JSPS KAKENHI Grant Numbers JP23116008, JP16H06307, and JP16H01311) to K.S.

References

  1. 1.
    Kraemer KH, Lee MM, Andrews AD, Lambert WC. The role of sunlight and DNA repair in melanoma and nonmelanoma skin cancer. The xeroderma pigmentosum paradigm. Arch Dermatol. 1994;130:1018–21.  https://doi.org/10.1001/archderm.1994.01690080084012.CrossRefPubMedGoogle Scholar
  2. 2.
    Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T, editors. DNA repair and mutagenesis. 2nd ed. Washington: ASM Press; 2006.Google Scholar
  3. 3.
    Gillet LCJ, Schärer OD. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev. 2006;106:253–76.  https://doi.org/10.1021/cr040483f.CrossRefPubMedGoogle Scholar
  4. 4.
    Cleaver JE, Crowley E. UV damage, DNA repair and skin carcinogenesis. Front Biosci. 2002;7:d1024–43.  https://doi.org/10.2741/A829.CrossRefPubMedGoogle Scholar
  5. 5.
    Friedberg EC. How nucleotide excision repair protects against cancer. Nat Rev Cancer. 2001;1:22–33.  https://doi.org/10.1038/35094000.CrossRefPubMedGoogle Scholar
  6. 6.
    Schärer OD. Nucleotide excision repair in eukaryotes. Cold Spring Harb Perspect Biol. 2013;5:a012609.  https://doi.org/10.1101/cshperspect.a012609.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Brooks PJ, Wise DS, Berry DA, Kosmoski JV, Smerdon MJ, Somers RL, Mackie H, Spoonde AY, Ackerman EJ, Coleman K, Tarone RE, Robbins JH. The oxidative DNA lesion 8,5′-(S)-cyclo-2′-deoxyadenosine is repaired by the nucleotide excision repair pathway and blocks gene expression in mammalian cells. J Biol Chem. 2000;275:22355–62.  https://doi.org/10.1074/jbc.M002259200.CrossRefPubMedGoogle Scholar
  8. 8.
    Kuraoka I, Bender C, Romieu A, Cadet J, Wood RD, Lindahl T. Removal of oxygen free-radical-induced 5′,8-purine cyclodeoxynucleosides from DNA by the nucleotide excision-repair pathway in human cells. Proc Natl Acad Sci U S A. 2000;97:3832–7.  https://doi.org/10.1073/pnas.070471597.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wood RD. Mammalian nucleotide excision repair proteins and interstrand crosslink repair. Environ Mol Mutagen. 2010;51:520–6.  https://doi.org/10.1002/em.20569.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Langevin F, Crossan GP, Rosado IV, Arends MJ, Patel KJ. Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature. 2011;475:53–8.  https://doi.org/10.1038/nature10192.CrossRefPubMedGoogle Scholar
  11. 11.
    Noll DM, Mason TM, Miller PS. Formation and repair of interstrand cross-links in DNA. Chem Rev. 2006;106:277–301.  https://doi.org/10.1021/cr040478b.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Riedl T, Hanaoka F, Egly JM. The comings and goings of nucleotide excision repair factors on damaged DNA. EMBO J. 2003;22:5293–303.  https://doi.org/10.1093/emboj/cdg489.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sugasawa K, Ng JMY, Masutani C, Iwai S, van der Spek PJ, Eker APM, Hanaoka F, Bootsma D, Hoeijmakers JHJ. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell. 1998;2:223–32.  https://doi.org/10.1016/S1097-2765(00)80132-X.CrossRefPubMedGoogle Scholar
  14. 14.
    Volker M, Moné MJ, Karmakar P, van Hoffen A, Schul W, Vermeulen W, Hoeijmakers JHJ, van Driel R, van Zeeland AA, Mullenders LHF. Sequential assembly of the nucleotide excision repair factors in vivo. Mol Cell. 2001;8:213–24.  https://doi.org/10.1016/s1097-2765(01)00281-7.CrossRefPubMedGoogle Scholar
  15. 15.
    Fujiwara Y, Masutani C, Mizukoshi T, Kondo J, Hanaoka F, Iwai S. Characterization of DNA recognition by the human UV-damaged DNA-binding protein. J Biol Chem. 1999;274:20027–33.  https://doi.org/10.1074/jbc.274.28.20027.CrossRefPubMedGoogle Scholar
  16. 16.
    Sugasawa K, Okuda Y, Saijo M, Nishi R, Matsuda N, Chu G, Mori T, Iwai S, Tanaka K, Tanaka K, Hanaoka F. UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell. 2005;121:387–400.  https://doi.org/10.1016/j.cell.2005.02.035.CrossRefPubMedGoogle Scholar
  17. 17.
    Wittschieben BØ, Iwai S, Wood RD. DDB1-DDB2 (xeroderma pigmentosum group E) protein complex recognizes a cyclobutane pyrimidine dimer, mismatches, apurinic/apyrimidinic sites, and compound lesions in DNA. J Biol Chem. 2005;280:39982–9.  https://doi.org/10.1074/jbc.M507854200.CrossRefPubMedGoogle Scholar
  18. 18.
    Hanawalt PC, Spivak G. Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol. 2008;9:958–70.  https://doi.org/10.1038/nrm2549.CrossRefPubMedGoogle Scholar
  19. 19.
    Compe E, Egly JM. TFIIH: when transcription met DNA repair. Nat Rev Mol Cell Biol. 2012;13:343–54.  https://doi.org/10.1038/nrm3350.CrossRefPubMedGoogle Scholar
  20. 20.
    Araújo SJ, Nigg EA, Wood RD. Strong functional interactions of TFIIH with XPC and XPG in human DNA nucleotide excision repair, without a preassembled repairosome. Mol Cell Biol. 2001;21:2281–91.  https://doi.org/10.1128/MCB.21.7.2281-2291.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Li RY, Calsou P, Jones CJ, Salles B. Interactions of the transcription/DNA repair factor TFIIH and XP repair proteins with DNA lesions in a cell-free repair assay. J Mol Biol. 1998;281:211–8.  https://doi.org/10.1006/jmbi.1998.1949.CrossRefPubMedGoogle Scholar
  22. 22.
    Yokoi M, Masutani C, Maekawa T, Sugasawa K, Ohkuma Y, Hanaoka F. The xeroderma pigmentosum group C protein complex XPC-HR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA. J Biol Chem. 2000;275:9870–5.CrossRefGoogle Scholar
  23. 23.
    Evans E, Moggs JG, Hwang JR, Egly JM, Wood RD. Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J. 1997;16:6559–73.  https://doi.org/10.1093/emboj/16.21.6559.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Mu D, Wakasugi M, Hsu DS, Sancar A. Characterization of reaction intermediates of human excision repair nuclease. J Biol Chem. 1997;272:28971–9.  https://doi.org/10.1074/jbc.272.46.28971.CrossRefPubMedGoogle Scholar
  25. 25.
    Tapias A, Auriol J, Forget D, Enzlin JH, Schärer OD, Coin F, Coulombe B, Egly JM. Ordered conformational changes in damaged DNA induced by nucleotide excision repair factors. J Biol Chem. 2004;279:19074–83.  https://doi.org/10.1074/jbc.M312611200.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Li C-L, Golebiowski FM, Onishi Y, Samara NL, Sugasawa K, Yang W. Tripartite DNA lesion recognition and verification by XPC, TFIIH, and XPA in nucleotide excision repair. Mol Cell. 2015;59:1025–34.  https://doi.org/10.1016/j.molcel.2015.08.012.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    de Laat WL, Appeldoorn E, Sugasawa K, Weterings E, Jaspers NGJ, Hoeijmakers JHJ. DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair. Genes Dev. 1998;12:2598–609.  https://doi.org/10.1101/gad.12.16.2598.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    He Z, Henricksen LA, Wold MS, Ingles CJ. RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature. 1995;374:566–9.  https://doi.org/10.1038/374566a0.CrossRefGoogle Scholar
  29. 29.
    Li L, Lu X, Peterson CA, Legerski RJ. An interaction between the DNA repair factor XPA and replication protein A appears essential for nucleotide excision repair. Mol Cell Biol. 1995;15:5396–402.  https://doi.org/10.1128/MCB.15.10.5396.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Matsuda T, Saijo M, Kuraoka I, Kobayashi T, Nakatsu Y, Nagai A, Enjoji T, Masutani C, Sugasawa K, Hanaoka F. DNA repair protein XPA binds replication protein A (RPA). J Biol Chem. 1995;270:4152–7.  https://doi.org/10.1074/jbc.270.8.4152.CrossRefPubMedGoogle Scholar
  31. 31.
    Patrick SM, Turchi JJ. Xeroderma pigmentosum complementation group a protein (XPA) modulates RPA-DNA interactions via enhanced complex stability and inhibition of strand separation activity. J Biol Chem. 2002;277:16096–101.  https://doi.org/10.1074/jbc.M200816200.CrossRefPubMedGoogle Scholar
  32. 32.
    Matsunaga T, Mu D, Park CH, Reardon JT, Sancar A. Human DNA repair excision nuclease. Analysis of the roles of the subunits involved in dual incisions by using anti-XPG and anti-ERCC1 antibodies. J Biol Chem. 1995;270:20862–9.  https://doi.org/10.1074/jbc.270.35.20862.CrossRefPubMedGoogle Scholar
  33. 33.
    Moggs JG, Yarema KJ, Essigmann JM, Wood RD. Analysis of incision sites produced by human cell extracts and purified proteins during nucleotide excision repair of a 1,3-intrastrand d(GpTpG)-cisplatin adduct. J Biol Chem. 1996;271:7177–86.  https://doi.org/10.1074/jbc.271.12.7177.CrossRefPubMedGoogle Scholar
  34. 34.
    O’Donovan A, Davies AA, Moggs JG, West SC, Wood RD. XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature. 1994;371:432–5.  https://doi.org/10.1038/371432a0.CrossRefPubMedGoogle Scholar
  35. 35.
    Sijbers AM, de Laat WL, Ariza RR, Biggerstaff M, Wei YF, Moggs JG, Carter KC, Shell BK, Evans E, de Jong MC, Rademakers S, de Rooij J, Jaspers NGJ, Hoeijmakers JHJ, Wood RD. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell. 1996;86:811–22.  https://doi.org/10.1016/S0092-8674(00)80155-5.CrossRefPubMedGoogle Scholar
  36. 36.
    Ito S, Kuraoka I, Chymkowitch P, Compe E, Takedachi A, Ishigami C, Coin F, Egly JM, Tanaka K. XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: implications for Cockayne syndrome in XP-G/CS patients. Mol Cell. 2007;26:231–43.  https://doi.org/10.1016/j.molcel.2007.03.013.CrossRefPubMedGoogle Scholar
  37. 37.
    Zotter A, Luijsterburg MS, Warmerdam DO, Ibrahim S, Nigg A, van Cappellen WA, Hoeijmakers JHJ, van Driel R, Vermeulen W, Houtsmuller AB. Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV-induced DNA damage depends on functional TFIIH. Mol Cell Biol. 2006;26:8868–79.  https://doi.org/10.1128/MCB.00695-06.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Li L, Elledge SJ, Peterson CA, Bales ES, Legerski RJ. Specific association between the human DNA repair proteins XPA and ERCC1. Proc Natl Acad Sci U S A. 1994;91:5012–6.  https://doi.org/10.1073/pnas.91.11.5012.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Li L, Peterson CA, Lu X, Legerski RJ. Mutations in XPA that prevent association with ERCC1 are defective in nucleotide excision repair. Mol Cell Biol. 1995;15:1993–8.  https://doi.org/10.1128/MCB.15.4.1993.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Park CH, Sancar A. Formation of a ternary complex by human XPA, ERCC1, and ERCC4(XPF) excision repair proteins. Proc Natl Acad Sci U S A. 1994;91:5017–21.  https://doi.org/10.1073/pnas.91.11.5017.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Staresincic L, Fagbemi AF, Enzlin JH, Gourdin AM, Wijgers N, Dunand-Sauthier I, Giglia-Mari G, Clarkson SG, Vermeulen W, Schärer OD. Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J. 2009;28:1111–20.  https://doi.org/10.1038/emboj.2009.49.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Constantinou A, Gunz D, Evans E, Lalle P, Bates PA, Wood RD, Clarkson SG. Conserved residues of human XPG protein important for nuclease activity and function in nucleotide excision repair. J Biol Chem. 1999;274:5637–48.  https://doi.org/10.1074/jbc.274.9.5637.CrossRefPubMedGoogle Scholar
  43. 43.
    Wakasugi M, Reardon JT, Sancar A. The non-catalytic function of XPG protein during dual incision in human nucleotide excision repair. J Biol Chem. 1997;272:16030–4.  https://doi.org/10.1074/jbc.272.25.16030.CrossRefPubMedGoogle Scholar
  44. 44.
    Aboussekhra A, Biggerstaff M, Shivji MKK, Vilpo JA, Moncollin V, Podust VN, Protić M, Hübscher U, Egly JM, Wood RD. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell. 1995;80:859–68.  https://doi.org/10.1016/0092-8674(95)90289-9.CrossRefPubMedGoogle Scholar
  45. 45.
    Araújo SJ, Tirode F, Coin F, Pospiech H, Syväoja JE, Stucki M, Hübscher U, Egly JM, Wood RD. Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK. Genes Dev. 2000;14:349–59.  https://doi.org/10.1101/gad.14.3.349.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Shivji MK, Podust VN, Hübscher U, Wood RD. Nucleotide excision repair DNA synthesis by DNA polymerase epsilon in the presence of PCNA, RFC, and RPA. Biochemistry. 1995;34:5011–7.  https://doi.org/10.1021/bi00015a012.CrossRefPubMedGoogle Scholar
  47. 47.
    Gary R, Ludwig DL, Cornelius HL, MacInnes MA, Park MS. The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21. J Biol Chem. 1997;272:24522–9.  https://doi.org/10.1074/jbc.272.39.24522.CrossRefPubMedGoogle Scholar
  48. 48.
    Ogi T, Lehmann AR. The Y-family DNA polymerase k (pol k) functions in mammalian nucleotide-excision repair. Nat Cell Biol. 2006;8:640–2.  https://doi.org/10.1038/ncb1417.CrossRefPubMedGoogle Scholar
  49. 49.
    Ogi T, Limsirichaikul S, Overmeer RM, Volker M, Takenaka K, Cloney R, Nakazawa Y, Niimi A, Miki Y, Jaspers NG, Mullenders LHF, Yamashita S, Fousteri MI, Lehmann AR. Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. Mol Cell. 2010;37:714–27.  https://doi.org/10.1016/j.molcel.2010.02.009.CrossRefPubMedGoogle Scholar
  50. 50.
    Moser J, Kool H, Giakzidis I, Caldecott K, Mullenders LHF, Fousteri MI. Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell-cycle-specific manner. Mol Cell. 2007;27:311–23.  https://doi.org/10.1016/j.molcel.2007.06.014.CrossRefPubMedGoogle Scholar
  51. 51.
    Legerski R, Peterson C. Expression cloning of a human DNA repair gene involved in xeroderma pigmentosum group C. Nature. 1992;359:70–3.  https://doi.org/10.1038/359070a0.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Masutani C, Sugasawa K, Yanagisawa J, Sonoyama T, Ui M, Enomoto T, Takio K, Tanaka K, van der Spek PJ, Bootsma D, Hoeijmakers JHJ, Hanaoka F. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBO J. 1994;13:1831–43.CrossRefGoogle Scholar
  53. 53.
    Shivji MKK, Eker APM, Wood RD. DNA repair defect in xeroderma pigmentosum group C and complementing factor from HeLa cells. J Biol Chem. 1994;269:22749–57.PubMedGoogle Scholar
  54. 54.
    Min J-H, Pavletich NP. Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature. 2007;449:570–5.  https://doi.org/10.1038/nature06155.CrossRefPubMedGoogle Scholar
  55. 55.
    Anantharaman V. Peptide-N-glycanases and DNA repair proteins, Xp-C/Rad4, are, respectively, active and inactivated enzymes sharing a common transglutaminase fold. Hum Mol Genet. 2001;10:1627–30.  https://doi.org/10.1093/hmg/10.16.1627.CrossRefPubMedGoogle Scholar
  56. 56.
    Lee J-H, Choi JM, Lee C, Yi KJ, Cho Y. Structure of a peptide:N-glycanase-Rad23 complex: insight into the deglycosylation for denatured glycoproteins. Proc Natl Acad Sci U S A. 2005;102:9144–9.  https://doi.org/10.1073/pnas.0502082102.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Miller RD, Prakash L, Prakash S. Defective excision of pyrimidine dimers and interstrand DNA crosslinks in rad7 and rad23 mutants of Saccharomyces cerevisiae. Mol Gen Genet. 1982;188:235–9.  https://doi.org/10.1007/BF00332681.CrossRefPubMedGoogle Scholar
  58. 58.
    Sugasawa K, Ng JMY, Masutani C, Maekawa T, Uchida A, van der Spek PJ, Eker APM, Rademakers S, Visser C, Aboussekhra A, Wood RD, Hanaoka F, Bootsma D, Hoeijmakers JHJ. Two human homologs of Rad23 are functionally interchangeable in complex formation and stimulation of XPC repair activity. Mol Cell Biol. 1997;17:6924–31.  https://doi.org/10.1128/MCB.17.12.6924.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Ng JMY, Vermeulen W, van der Horst GTJ, Bergink S, Sugasawa K, Vrieling H, Hoeijmakers JHJ. A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein. Genes Dev. 2003;17:1630–45.  https://doi.org/10.1101/gad.260003.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Okuda Y, Nishi R, Ng JMY, Vermeulen W, van der Horst GTJ, Mori T, Hoeijmakers JHJ, Hanaoka F, Sugasawa K. Relative levels of the two mammalian Rad23 homologs determine composition and stability of the xeroderma pigmentosum group C protein complex. DNA Repair (Amst). 2004;3:1285–95.  https://doi.org/10.1016/j.dnarep.2004.06.010.CrossRefGoogle Scholar
  61. 61.
    van der Spek PJ, Visser CE, Hanaoka F, Smit B, Hagemeijer A, Bootsma D, Hoeijmakers JHJ. Cloning, comparative mapping, and RNA expression of the mouse homologues of the Saccharomyces cerevisiae nucleotide excision repair gene RAD23. Genomics. 1996;31:20–7.  https://doi.org/10.1006/geno.1996.0004.CrossRefPubMedGoogle Scholar
  62. 62.
    Watkins JF, Sung P, Prakash L, Prakash S. The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function. Mol Cell Biol. 1993;13:7757–65.  https://doi.org/10.1128/MCB.13.12.7757.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Sugasawa K, Masutani C, Uchida A, Maekawa T, van der Spek PJ, Bootsma D, Hoeijmakers JHJ, Hanaoka F. HHR23B, a human Rad23 homolog, stimulates XPC protein in nucleotide excision repair in vitro. Mol Cell Biol. 1996;16:4852–61.  https://doi.org/10.1128/MCB.16.9.4852.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Masutani C, Araki M, Sugasawa K, van der Spek PJ, Yamada A, Uchida A, Maekawa T, Bootsma D, Hoeijmakers JHJ, Hanaoka F. Identification and characterization of XPC-binding domain of hHR23B. Mol Cell Biol. 1997;17:6915–23.  https://doi.org/10.1128/MCB.17.12.6915.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Araki M, Masutani C, Takemura M, Uchida A, Sugasawa K, Kondoh J, Ohkuma Y, Hanaoka F. Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair. J Biol Chem. 2001;276:18665–72.  https://doi.org/10.1074/jbc.M100855200.CrossRefPubMedGoogle Scholar
  66. 66.
    Nishi R, Okuda Y, Watanabe E, Mori T, Iwai S, Masutani C, Sugasawa K, Hanaoka F. Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein. Mol Cell Biol. 2005;25:5664–74.  https://doi.org/10.1128/MCB.25.13.5664-5674.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Mu D, Park CH, Matsunaga T, Hsu DS, Reardon JT, Sancar A. Reconstitution of human DNA repair excision nuclease in a highly defined system. J Biol Chem. 1995;270:2415–8.  https://doi.org/10.1074/jbc.270.6.2415.CrossRefPubMedGoogle Scholar
  68. 68.
    Errabolu R, Sanders MA, Salisbury JL. Cloning of a cDNA encoding human centrin, an EF-hand protein of centrosomes and mitotic spindle poles. J Cell Sci. 1994;107(Pt 1):9–16.PubMedGoogle Scholar
  69. 69.
    Salisbury JL, Suino KM, Busby R, Springett M. Centrin-2 is required for centriole duplication in mammalian cells. Curr Biol. 2002;12:1287–92.  https://doi.org/10.1016/S0960-9822(02)01019-9.CrossRefPubMedGoogle Scholar
  70. 70.
    Batty D, Rapic’-Otrin V, Levine AS, Wood RD. Stable binding of human XPC complex to irradiated DNA confers strong discrimination for damaged sites. J Mol Biol. 2000;300:275–90.  https://doi.org/10.1006/jmbi.2000.3857.CrossRefPubMedGoogle Scholar
  71. 71.
    Hey T, Lipps G, Sugasawa K, Iwai S, Hanaoka F, Krauss G. The XPC-HR23B complex displays high affinity and specificity for damaged DNA in a true-equilibrium fluorescence assay. Biochemistry. 2002;41:6583–7.  https://doi.org/10.1021/bi012202t.CrossRefPubMedGoogle Scholar
  72. 72.
    Kusumoto R, Masutani C, Sugasawa K, Iwai S, Araki M, Uchida A, Mizukoshi T, Hanaoka F. Diversity of the damage recognition step in the global genomic nucleotide excision repair in vitro. Mutat Res. 2001;485:219–27.  https://doi.org/10.1016/S0921-8777(00)00082-3.CrossRefPubMedGoogle Scholar
  73. 73.
    Sugasawa K, Okamoto T, Shimizu Y, Masutani C, Iwai S, Hanaoka F. A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev. 2001;15:507–21.  https://doi.org/10.1101/gad.866301.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Sugasawa K, Shimizu Y, Iwai S, Hanaoka F. A molecular mechanism for DNA damage recognition by the xeroderma pigmentosum group C protein complex. DNA Repair (Amst). 2002;1:95–107.  https://doi.org/10.1016/S1568-7864(01)00008-8.CrossRefGoogle Scholar
  75. 75.
    Buterin T, Meyer C, Giese B, Naegeli H. DNA quality control by conformational readout on the undamaged strand of the double helix. Chem Biol. 2005;12:913–22.  https://doi.org/10.1016/j.chembiol.2005.06.011.CrossRefPubMedGoogle Scholar
  76. 76.
    Sugasawa K, Akagi J-I, Nishi R, Iwai S, Hanaoka F. Two-step recognition of DNA damage for mammalian nucleotide excision repair: directional binding of the XPC complex and DNA strand scanning. Mol Cell. 2009;36:642–53.  https://doi.org/10.1016/j.molcel.2009.09.035.CrossRefPubMedGoogle Scholar
  77. 77.
    Kong M, Liu L, Chen X, Driscoll KI, Mao P, Böhm S, Kad NM, Watkins SC, Bernstein KA, Wyrick JJ, Min J-H, Van Houten B. Single-molecule imaging reveals that Rad4 employs a dynamic DNA damage recognition process. Mol Cell. 2016;64:376–87.  https://doi.org/10.1016/j.molcel.2016.09.005.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Camenisch U, Träutlein D, Clement FC, Fei J, Leitenstorfer A, Ferrando-May E, Naegeli H. Two-stage dynamic DNA quality check by xeroderma pigmentosum group C protein. EMBO J. 2009;28:2387–99.  https://doi.org/10.1038/emboj.2009.187.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Chen X, Velmurugu Y, Zheng G, Park B, Shim Y, Kim Y, Liu L, Van Houten B, He C, Ansari A, Min J-H. Kinetic gating mechanism of DNA damage recognition by Rad4/XPC. Nat Commun. 2015;6:5849.  https://doi.org/10.1038/ncomms6849.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Hess MT, Schwitter U, Petretta M, Giese B, Naegeli H. Bipartite substrate discrimination by human nucleotide excision repair. Proc Natl Acad Sci U S A. 1997;94:6664–9.  https://doi.org/10.1016/0092-8674(95)90289-9.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    McAteer K, Jing Y, Kao J, Taylor JS, Kennedy MA. Solution-state structure of a DNA dodecamer duplex containing a Cis-syn thymine cyclobutane dimer, the major UV photoproduct of DNA. J Mol Biol. 1998;282:1013–32.  https://doi.org/10.1006/jmbi.1998.2062.CrossRefPubMedGoogle Scholar
  82. 82.
    Coin F, Marinoni JC, Rodolfo C, Fribourg S, Pedrini AM, Egly JM. Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH. Nat Genet. 1998;20:184–8.  https://doi.org/10.1038/2491.CrossRefPubMedGoogle Scholar
  83. 83.
    Schaeffer L, Moncollin V, Roy R, Staub A, Mezzina M, Sarasin A, Weeda G, Hoeijmakers JHJ, Egly JM. The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. EMBO J. 1994;13:2388–92.CrossRefGoogle Scholar
  84. 84.
    Mathieu N, Kaczmarek N, Naegeli H. Strand- and site-specific DNA lesion demarcation by the xeroderma pigmentosum group D helicase. Proc Natl Acad Sci U S A. 2010;107:17545–50.  https://doi.org/10.1073/pnas.1004339107.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Naegeli H, Bardwell L, Friedberg EC. The DNA helicase and adenosine triphosphatase activities of yeast Rad3 protein are inhibited by DNA damage. A potential mechanism for damage-specific recognition. J Biol Chem. 1992;267:392–8.PubMedGoogle Scholar
  86. 86.
    Naegeli H, Sugasawa K. The xeroderma pigmentosum pathway: decision tree analysis of DNA quality. DNA Repair (Amst). 2011;10:673–83.  https://doi.org/10.1016/j.dnarep.2011.04.019.CrossRefGoogle Scholar
  87. 87.
    Hwang JR, Moncollin V, Vermeulen W, Seroz T, van Vuuren H, Hoeijmakers JHJ, Egly JM. A 3′→5′ XPB helicase defect in repair/transcription factor TFIIH of xeroderma pigmentosum group B affects both DNA repair and transcription. J Biol Chem. 1996;271:15898–904.  https://doi.org/10.1074/jbc.271.27.15898.CrossRefPubMedGoogle Scholar
  88. 88.
    Tirode F, Busso D, Coin F, Egly JM. Reconstitution of the transcription factor TFIIH: assignment of functions for the three enzymatic subunits, XPB, XPD, and cdk7. Mol Cell. 1999;3:87–95.  https://doi.org/10.1016/S1097-2765(00)80177-X.CrossRefPubMedGoogle Scholar
  89. 89.
    Coin F, Oksenych V, Egly JM. Distinct roles for the XPB/p52 and XPD/p44 subcomplexes of TFIIH in damaged DNA opening during nucleotide excision repair. Mol Cell. 2007;26:245–56.  https://doi.org/10.1016/j.molcel.2007.03.009.CrossRefPubMedGoogle Scholar
  90. 90.
    Oksenych V, Bernardes de Jesus B, Zhovmer A, Egly JM, Coin F. Molecular insights into the recruitment of TFIIH to sites of DNA damage. EMBO J. 2009;28:2971–80.  https://doi.org/10.1038/emboj.2009.230.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Tanaka K, Miura N, Satokata I, Miyamoto I, Yoshida MC, Satoh Y, Kondo S, Yasui A, Okayama H, Okada Y. Analysis of a human DNA excision repair gene involved in group A xeroderma pigmentosum and containing a zinc-finger domain. Nature. 1990;348:73–6.  https://doi.org/10.1038/348073a0.CrossRefGoogle Scholar
  92. 92.
    Bunick CG, Miller MR, Fuller BE, Fanning E, Chazin WJ. Biochemical and structural domain analysis of xeroderma pigmentosum complementation group C protein. Biochemistry. 2006;45:14965–79.  https://doi.org/10.1021/bi061370o.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Nishi R, Sakai W, Tone D, Hanaoka F, Sugasawa K. Structure-function analysis of the EF-hand protein centrin-2 for its intracellular localization and nucleotide excision repair. Nucleic Acids Res. 2013;41:6917–29.  https://doi.org/10.1093/nar/gkt434.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Nocentini S, Coin F, Saijo M, Tanaka K, Egly JM. DNA damage recognition by XPA protein promotes efficient recruitment of transcription factor II H. J Biol Chem. 1997;272:22991–4.  https://doi.org/10.1074/jbc.272.37.22991.CrossRefPubMedGoogle Scholar
  95. 95.
    Park CH, Mu D, Reardon JT, Sancar A. The general transcription-repair factor TFIIH is recruited to the excision repair complex by the XPA protein independent of the TFIIE transcription factor. J Biol Chem. 1995;270:4896–902.  https://doi.org/10.1074/jbc.270.9.4896.CrossRefPubMedGoogle Scholar
  96. 96.
    You J-S, Wang M, Lee S-H. Biochemical analysis of the damage recognition process in nucleotide excision repair. J Biol Chem. 2003;278:7476–85.  https://doi.org/10.1074/jbc.M210603200.CrossRefPubMedGoogle Scholar
  97. 97.
    Asahina H, Kuraoka I, Shirakawa M, Morita EH, Miura N, Miyamoto I, Ohtsuka E, Okada Y, Tanaka K. The XPA protein is a zinc metalloprotein with an ability to recognize various kinds of DNA damage. Mutat Res. 1994;315:229–37.  https://doi.org/10.1016/0921-8777(94)90034-5.CrossRefPubMedGoogle Scholar
  98. 98.
    Jones CJ, Wood RD. Preferential binding of the xeroderma pigmentosum group A complementing protein to damaged DNA. Biochemistry. 1993;32:12096–104.  https://doi.org/10.1021/bi00096a021.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Missura M, Buterin T, Hindges R, Hübscher U, Kaspárková J, Brabec V, Naegeli H. Double-check probing of DNA bending and unwinding by XPA-RPA: an architectural function in DNA repair. EMBO J. 2001;20:3554–64.  https://doi.org/10.1093/emboj/20.13.3554.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Krasikova YS, Rechkunova NI, Maltseva EA, Petruseva IO, Lavrik OI. Localization of xeroderma pigmentosum group A protein and replication protein A on damaged DNA in nucleotide excision repair. Nucleic Acids Res. 2010;38:8083–94.  https://doi.org/10.1093/nar/gkq649.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Coin F, Oksenych V, Mocquet V, Groh S, Blattner C, Egly JM. Nucleotide excision repair driven by the dissociation of CAK from TFIIH. Mol Cell. 2008;31:9–20.  https://doi.org/10.1016/j.molcel.2008.04.024.CrossRefPubMedGoogle Scholar
  102. 102.
    Goosen N, Moolenaar GF. Role of ATP hydrolysis by UvrA and UvrB during nucleotide excision repair. Res Microbiol. 2001;152:401–9.  https://doi.org/10.1016/S0923-2508(01)01211-6.CrossRefPubMedGoogle Scholar
  103. 103.
    Kad NM, Wang H, Kennedy GG, Warshaw DM, Van Houten B. Collaborative dynamic DNA scanning by nucleotide excision repair proteins investigated by single- molecule imaging of quantum-dot-labeled proteins. Mol Cell. 2010;37:702–13.  https://doi.org/10.1016/j.molcel.2010.02.003.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Selby CP, Sancar A. Structure and function of the (A) BC excinuclease of Escherichia coli. Mutat Res. 1990;236:203–11.  https://doi.org/10.1016/0921-8777(90)90005-P.CrossRefPubMedGoogle Scholar
  105. 105.
    Van Houten B, Croteau DL, DellaVecchia MJ, Wang H, Kisker C. “Close-fitting sleeves”: DNA damage recognition by the UvrABC nuclease system. Mutat Res. 2005;577:92–117.  https://doi.org/10.1016/j.mrfmmm.2005.03.013.CrossRefPubMedGoogle Scholar
  106. 106.
    Peng W, Shaw BR. Accelerated deamination of cytosine residues in UV-induced cyclobutane pyrimidine dimers leads to CC→TT transitions. Biochemistry. 1996;35:10172–81.  https://doi.org/10.1021/bi960001x.CrossRefPubMedGoogle Scholar
  107. 107.
    Stary A, Sarasin A. Molecular mechanisms of UV-induced mutations as revealed by the study of DNA polymerase h in human cells. Res Microbiol. 2002;153:441–5.  https://doi.org/10.1016/S0923-2508(02)01343-8.CrossRefPubMedGoogle Scholar
  108. 108.
    You YH, Lee DH, Yoon JH, Nakajima S, Yasui A, Pfeifer GP. Cyclobutane pyrimidine dimers are responsible for the vast majority of mutations induced by UVB irradiation in mammalian cells. J Biol Chem. 2001;276:44688–94.  https://doi.org/10.1074/jbc.M107696200.CrossRefPubMedGoogle Scholar
  109. 109.
    Keeney S, Chang GJ, Linn S. Characterization of a human DNA damage binding protein implicated in xeroderma pigmentosum E. J Biol Chem. 1993;268:21293–300.PubMedGoogle Scholar
  110. 110.
    Nichols AF, Itoh T, Graham JA, Liu W, Yamaizumi M, Linn S. Human damage-specific DNA-binding protein p48. Characterization of XPE mutations and regulation following UV irradiation. J Biol Chem. 2000;275:21422–8.  https://doi.org/10.1074/jbc.M000960200.CrossRefPubMedGoogle Scholar
  111. 111.
    Rapić-Otrin V, Navazza V, Nardo T, Botta E, McLenigan M, Bisi DC, Levine AS, Stefanini M. True XP group E patients have a defective UV-damaged DNA binding protein complex and mutations in DDB2 which reveal the functional domains of its p48 product. Hum Mol Genet. 2003;12:1507–22.  https://doi.org/10.1093/hmg/ddg174.CrossRefPubMedGoogle Scholar
  112. 112.
    Dualan R, Brody T, Keeney S, Nichols AF, Admon A, Linn S. Chromosomal localization and cDNA cloning of the genes (DDB1 and DDB2) for the p127 and p48 subunits of a human damage-specific DNA binding protein. Genomics. 1995;29:62–9.  https://doi.org/10.1006/geno.1995.1215.CrossRefPubMedGoogle Scholar
  113. 113.
    Scrima A, Konícková R, Czyzewski BK, Kawasaki Y, Jeffrey PD, Groisman R, Nakatani Y, Iwai S, Pavletich NP, Thomä NH. Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex. Cell. 2008;135:1213–23.  https://doi.org/10.1016/j.cell.2008.10.045.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Payne A, Chu G. Xeroderma pigmentosum group E binding factor recognizes a broad spectrum of DNA damage. Mutat Res. 1994;310:89–102.  https://doi.org/10.1016/0027-5107(94)90012-4.CrossRefPubMedGoogle Scholar
  115. 115.
    Reardon JT, Nichols AF, Keeney S, Smith CA, Taylor JS, Linn S, Sancar A. Comparative analysis of binding of human damaged DNA-binding protein (XPE) and Escherichia coli damage recognition protein (UvrA) to the major ultraviolet photoproducts: T[c,s]T, T[t,s]T, T[6-4]T, and T[Dewar]T. J Biol Chem. 1993;268:21301–8.PubMedGoogle Scholar
  116. 116.
    Fitch ME, Nakajima S, Yasui A, Ford JM. In vivo recruitment of XPC to UV-induced cyclobutane pyrimidine dimers by the DDB2 gene product. J Biol Chem. 2003;278:46906–10.  https://doi.org/10.1074/jbc.M307254200.CrossRefPubMedGoogle Scholar
  117. 117.
    Moser J, Volker M, Kool H, Alekseev S, Vrieling H, Yasui A, Van Zeeland AA, Mullenders LHF. The UV-damaged DNA binding protein mediates efficient targeting of the nucleotide excision repair complex to UV-induced photo lesions. DNA Repair (Amst). 2005;4:571–82.  https://doi.org/10.1016/j.dnarep.2005.01.001.CrossRefGoogle Scholar
  118. 118.
    Nishi R, Alekseev S, Dinant C, Hoogstraten D, Houtsmuller AB, Hoeijmakers JHJ, Vermeulen W, Hanaoka F, Sugasawa K. UV-DDB-dependent regulation of nucleotide excision repair kinetics in living cells. DNA Repair (Amst). 2009;8:767–76.  https://doi.org/10.1016/j.dnarep.2009.02.004.CrossRefGoogle Scholar
  119. 119.
    Wang Q-E, Zhu Q, Wani G, Chen J, Wani AA. UV radiation-induced XPC translocation within chromatin is mediated by damaged-DNA binding protein, DDB2. Carcinogenesis. 2004;25:1033–43.  https://doi.org/10.1093/carcin/bgh085.CrossRefPubMedGoogle Scholar
  120. 120.
    Hwang BJ, Ford JM, Hanawalt PC, Chu G. Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc Natl Acad Sci U S A. 1999;96:424–8.  https://doi.org/10.1073/pnas.96.2.424.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Tang JY, Hwang BJ, Ford JM, Hanawalt PC, Chu G. Xeroderma pigmentosum p48 gene enhances global genomic repair and suppresses UV-induced mutagenesis. Mol Cell. 2000;5:737–44.  https://doi.org/10.1016/S1097-2765(00)80252-X.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Adimoolam S, Ford JM. p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene. Proc Natl Acad Sci U S A. 2002;99:12985–90.  https://doi.org/10.1073/pnas.202485699.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Itoh T, O’Shea C, Linn S. Impaired regulation of tumor suppressor p53 caused by mutations in the xeroderma pigmentosum DDB2 gene: mutual regulatory interactions between p48(DDB2) and p53. Mol Cell Biol. 2003;23:7540–53.  https://doi.org/10.1128/MCB.23.21.7540-7553.2003.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Bagchi S, Raychaudhuri P. Damaged-DNA binding protein-2 drives apoptosis following DNA damage. Cell Div. 2010;5:3.  https://doi.org/10.1186/1747-1028-5-3.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Itoh T, Iwashita S, Cohen MB, Meyerholz DK, Linn S. Ddb2 is a haploinsufficient tumor suppressor and controls spontaneous germ cell apoptosis. Hum Mol Genet. 2007;16:1578–86.  https://doi.org/10.1093/hmg/ddm107.CrossRefPubMedGoogle Scholar
  126. 126.
    Stoyanova T, Roy N, Kopanja D, Bagchi S, Raychaudhuri P. DDB2 decides cell fate following DNA damage. Proc Natl Acad Sci U S A. 2009;106:10690–5.  https://doi.org/10.1073/pnas.0812254106.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Stubbert LJ, Smith JM, Hamill JD, Arcand TL, McKay BC. The anti-apoptotic role for p53 following exposure to ultraviolet light does not involve DDB2. Mutat Res. 2009;663:69–76.  https://doi.org/10.1016/j.mrfmmm.2009.01.010.CrossRefPubMedGoogle Scholar
  128. 128.
    Itoh T, Cado D, Kamide R, Linn S. DDB2 gene disruption leads to skin tumors and resistance to apoptosis after exposure to ultraviolet light but not a chemical carcinogen. Proc Natl Acad Sci U S A. 2004;101:2052–7.  https://doi.org/10.1073/pnas.0306551101.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Angers S, Li T, Yi X, MacCoss MJ, Moon RT, Zheng N. Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature. 2006;443:590–3.  https://doi.org/10.1038/nature05175.CrossRefPubMedGoogle Scholar
  130. 130.
    Higa LA, Wu M, Ye T, Kobayashi R, Sun H, Zhang H. CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat Cell Biol. 2006;8:1277–83.  https://doi.org/10.1038/ncb1490.CrossRefPubMedGoogle Scholar
  131. 131.
    Lee J, Zhou P. DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol Cell. 2007;26:775–80.  https://doi.org/10.1016/j.molcel.2007.06.001.CrossRefPubMedGoogle Scholar
  132. 132.
    Cavadini S, Fischer ES, Bunker RD, Potenza A, Lingaraju GM, Goldie KN, Mohamed WI, Faty M, Petzold G, Beckwith REJ, Tichkule RB, Hassiepen U, Abdulrahman W, Pantelic RS, Matsumoto S, Sugasawa K, Stahlberg H, Thomä NH. Cullin-RING ubiquitin E3 ligase regulation by the COP9 signalosome. Nature. 2016;531:598–603.  https://doi.org/10.1038/nature17416.CrossRefPubMedGoogle Scholar
  133. 133.
    Fischer ES, Scrima A, Böhm K, Matsumoto S, Lingaraju GM, Faty M, Yasuda T, Cavadini S, Wakasugi M, Hanaoka F, Iwai S, Gut H, Sugasawa K, Thomä NH. The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell. 2011;147:1024–39.  https://doi.org/10.1016/j.cell.2011.10.035.CrossRefPubMedGoogle Scholar
  134. 134.
    Groisman R, Polanowska J, Kuraoka I, Sawada J-I, Saijo M, Drapkin R, Kisselev AF, Tanaka K, Nakatani Y. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell. 2003;113:357–67.  https://doi.org/10.1016/S0092-8674(03)00316-7.CrossRefPubMedGoogle Scholar
  135. 135.
    Chen X, Zhang Y, Douglas L, Zhou P. UV-damaged DNA-binding proteins are targets of CUL-4A-mediated ubiquitination and degradation. J Biol Chem. 2001;276:48175–82.  https://doi.org/10.1074/jbc.M106808200.CrossRefPubMedGoogle Scholar
  136. 136.
    Kapetanaki MG, Guerrero-Santoro J, Bisi DC, Hsieh CL, Rapić-Otrin V, Levine AS. The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. Proc Natl Acad Sci U S A. 2006;103:2588–93.  https://doi.org/10.1073/pnas.0511160103.CrossRefPubMedGoogle Scholar
  137. 137.
    Matsuda N, Azuma K, Saijo M, Iemura S-I, Hioki Y, Natsume T, Chiba T, Tanaka K, Tanaka K. DDB2, the xeroderma pigmentosum group E gene product, is directly ubiquitylated by Cullin 4A-based ubiquitin ligase complex. DNA Repair (Amst). 2005;4:537–45.  https://doi.org/10.1016/j.dnarep.2004.12.012.CrossRefGoogle Scholar
  138. 138.
    Wang H, Zhai L, Xu J, Joo H-Y, Jackson S, Erdjument-Bromage H, Tempst P, Xiong Y, Zhang Y. Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol Cell. 2006;22:383–94.  https://doi.org/10.1016/j.molcel.2006.03.035.CrossRefPubMedGoogle Scholar
  139. 139.
    Matsumoto S, Fischer ES, Yasuda T, Dohmae N, Iwai S, Mori T, Nishi R, Yoshino K-I, Sakai W, Hanaoka F, Thomä NH, Sugasawa K. Functional regulation of the DNA damage-recognition factor DDB2 by ubiquitination and interaction with xeroderma pigmentosum group C protein. Nucleic Acids Res. 2015;43:1700–13.  https://doi.org/10.1093/nar/gkv038.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Puumalainen M-R, Lessel D, Rüthemann P, Kaczmarek N, Bachmann K, Ramadan K, Naegeli H. Chromatin retention of DNA damage sensors DDB2 and XPC through loss of p97 segregase causes genotoxicity. Nat Commun. 2014;5:3695.  https://doi.org/10.1038/ncomms4695.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Fitch ME, Cross IV, Turner SJ, Adimoolam S, Lin CX, Williams KG, Ford JM. The DDB2 nucleotide excision repair gene product p48 enhances global genomic repair in p53 deficient human fibroblasts. DNA Repair (Amst). 2003;2:819–26.  https://doi.org/10.1016/S1568-7864(03)00066-1.CrossRefGoogle Scholar
  142. 142.
    Rapić-Otrin V, McLenigan MP, Bisi DC, Gonzalez M, Levine AS. Sequential binding of UV DNA damage binding factor and degradation of the p48 subunit as early events after UV irradiation. Nucleic Acids Res. 2002;30:2588–98.  https://doi.org/10.1093/nar/30.11.2588.CrossRefPubMedGoogle Scholar
  143. 143.
    Pines A, Vrouwe MG, Marteijn JA, Typas D, Luijsterburg MS, Cansoy M, Hensbergen P, Deelder A, de Groot A, Matsumoto S, Sugasawa K, Thoma N, Vermeulen W, Vrieling H, Mullenders L. PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. J Cell Biol. 2012;199:235–49.  https://doi.org/10.1083/jcb.201112132.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Akita M, Tak Y-S, Shimura T, Matsumoto S, Okuda-Shimizu Y, Shimizu Y, Nishi R, Saitoh H, Iwai S, Mori T, Ikura T, Sakai W, Hanaoka F, Sugasawa K. SUMOylation of xeroderma pigmentosum group C protein regulates DNA damage recognition during nucleotide excision repair. Sci Rep. 2015;5:10984.  https://doi.org/10.1038/srep10984.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    van Cuijk L, van Belle GJ, Turkyilmaz Y, Poulsen SL, Janssens RC, Theil AF, Sabatella M, Lans H, Mailand N, Houtsmuller AB, Vermeulen W, Marteijn JA. SUMO and ubiquitin-dependent XPC exchange drives nucleotide excision repair. Nat Commun. 2015;6:7499.  https://doi.org/10.1038/ncomms8499.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Gale JM, Nissen KA, Smerdon MJ. UV-induced formation of pyrimidine dimers in nucleosome core DNA is strongly modulated with a period of 10.3 bases. Proc Natl Acad Sci U S A. 1987;84:6644–8.CrossRefGoogle Scholar
  147. 147.
    Gale JM, Smerdon MJ. UV induced (6-4) photoproducts are distributed differently than cyclobutane dimers in nucleosomes. Photochem Photobiol. 1990;51:411–7.  https://doi.org/10.1111/j.1751-1097.1990.tb01732.x.CrossRefPubMedGoogle Scholar
  148. 148.
    Pehrson JR. Thymine dimer formation as a probe of the path of DNA in and between nucleosomes in intact chromatin. Proc Natl Acad Sci U S A. 1989;86:9149–53.CrossRefGoogle Scholar
  149. 149.
    Pehrson JR. Probing the conformation of nucleosome linker DNA in situ with pyrimidine dimer formation. J Biol Chem. 1995;270:22440–4.  https://doi.org/10.1038/311532a0.CrossRefPubMedGoogle Scholar
  150. 150.
    Hara R, Mo J, Sancar A. DNA damage in the nucleosome core is refractory to repair by human excision nuclease. Mol Cell Biol. 2000;20:9173–81.  https://doi.org/10.1128/MCB.20.24.9173-9181.2000.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Yasuda T, Sugasawa K, Shimizu Y, Iwai S, Shiomi T, Hanaoka F. Nucleosomal structure of undamaged DNA regions suppresses the non-specific DNA binding of the XPC complex. DNA Repair (Amst). 2005;4:389–95.  https://doi.org/10.1016/j.dnarep.2004.10.008.CrossRefGoogle Scholar
  152. 152.
    Osakabe A, Tachiwana H, Kagawa W, Horikoshi N, Matsumoto S, Hasegawa M, Matsumoto N, Toga T, Yamamoto J, Hanaoka F, Thomä NH, Sugasawa K, Iwai S, Kurumizaka H. Structural basis of pyrimidine-pyrimidone (6-4) photoproduct recognition by UV-DDB in the nucleosome. Sci Rep. 2015;5:16330.  https://doi.org/10.1038/srep16330.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Hara R, Sancar A. The SWI/SNF chromatin-remodeling factor stimulates repair by human excision nuclease in the mononucleosome core particle. Mol Cell Biol. 2002;22:6779–87.  https://doi.org/10.1128/MCB.22.19.6779-6787.2002.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Hara R, Sancar A. Effect of damage type on stimulation of human excision nuclease by SWI/SNF chromatin remodeling factor. Mol Cell Biol. 2003;23:4121–5.  https://doi.org/10.1128/MCB.23.12.4121-4125.2003.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Ura K, Araki M, Saeki H, Masutani C, Ito T, Iwai S, Mizukoshi T, Kaneda Y, Hanaoka F. ATP-dependent chromatin remodeling facilitates nucleotide excision repair of UV-induced DNA lesions in synthetic dinucleosomes. EMBO J. 2001;20:2004–14.  https://doi.org/10.1093/emboj/20.8.2004.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Datta A, Bagchi S, Nag A, Shiyanov P, Adami GR, Yoon T, Raychaudhuri P. The p48 subunit of the damaged-DNA binding protein DDB associates with the CBP/p300 family of histone acetyltransferase. Mutat Res. 2001;486:89–97.  https://doi.org/10.1016/S0921-8777(01)00082-9.CrossRefPubMedGoogle Scholar
  157. 157.
    Martinez E, Palhan VB, Tjernberg A, Lymar ES, Gamper AM, Kundu TK, Chait BT, Roeder RG. Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo. Mol Cell Biol. 2001;21:6782–95.  https://doi.org/10.1128/MCB.21.20.6782-6795.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Matsunuma R, Niida H, Ohhata T, Kitagawa K, Sakai S, Uchida C, Shiotani B, Matsumoto M, Nakayama KI, Ogura H, Shiiya N, Kitagawa M. UV damage-induced phosphorylation of HBO1 triggers CRL4DDB2-mediated degradation to regulate cell proliferation. Mol Cell Biol. 2015;36:394–406.  https://doi.org/10.1128/MCB.00809-15.CrossRefPubMedGoogle Scholar
  159. 159.
    Adam S, Dabin J, Chevallier O, Leroy O, Baldeyron C, Corpet A, Lomonte P, Renaud O, Almouzni G, Polo SE. Real-time tracking of parental histones reveals their contribution to chromatin integrity following DNA damage. Mol Cell. 2016;64:65–78.  https://doi.org/10.1016/j.molcel.2016.08.019.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Luijsterburg MS, Lindh M, Acs K, Vrouwe MG, Pines A, van Attikum H, Mullenders LH, Dantuma NP. DDB2 promotes chromatin decondensation at UV-induced DNA damage. J Cell Biol. 2012;197:267–81.  https://doi.org/10.1083/jcb.201106074.CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Kakumu E, Nakanishi S, Shiratori HM, Kato A, Kobayashi W, Machida S, Yasuda T, Adachi N, Saito N, Ikura T, Kurumizaka H, Kimura H, Yokoi M, Sakai W, Sugasawa K. Xeroderma pigmentosum group C protein interacts with histones: regulation by acetylated states of histone H3. Genes Cells. 2017;22:310–27.  https://doi.org/10.1111/gtc.12479.CrossRefPubMedGoogle Scholar
  162. 162.
    Luijsterburg MS, Dinant C, Lans H, Stap J, Wiernasz E, Lagerwerf S, Warmerdam DO, Lindh M, Brink MC, Dobrucki JW, Aten JA, Fousteri MI, Jansen G, Dantuma NP, Vermeulen W, Mullenders LHF, Houtsmuller AB, Verschure PJ, van Driel R. Heterochromatin protein 1 is recruited to various types of DNA damage. J Cell Biol. 2009;185:577–86.  https://doi.org/10.1083/jcb.200810035.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Guo R, Chen J, Mitchell DL, Johnson DG. GCN5 and E2F1 stimulate nucleotide excision repair by promoting H3K9 acetylation at sites of damage. Nucleic Acids Res. 2011;39:1390–7.  https://doi.org/10.1093/nar/gkq983.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Biosignal Research CenterKobe UniversityKobeJapan

Personalised recommendations