Mitochondrial DNA in Telocytes

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1038)

Abstract

Telocyte (TC) is a new identified interstitial cell type with a small nuclear and one or several long and thin prolongations with enlargements on them. They were found in many mammals including humans, mouse, rats, dogs, and monkeys and play vital roles in many physiological and pathological conditions. The ultrastructure of mitochondria was observed in TCs, and the alterations were found in TCs from inflammatory ureter tissue. MtDNA is associated with mitochondria normal functions and involved in physiological and pathological processes. However, mitochondria and mtDNA in TCs were not investigated deeply. This review will introduce the origin, distribution, morphology, and functions of TCs and the distribution and functions of TC mitochondria in order to improve a better understanding of the potential functions of mtDNA in TCs.

Keywords

Mitochondria DNA Telocytes 

Notes

Acknowledgments

The work was supported by Zhongshan Distinguished Professor Grant (XDW), the National Nature Science Foundation of China (91230204, 81270099, 81320108001, 81270131, 81300010), the Shanghai Committee of Science and Technology (12JC1402200, 12431900207, 11410708600, 14431905100), Operation funding of Shanghai Institute of Clinical Bioinformatics, Ministry of Education for Academic Special Science and Research Foundation for PhD Education (20130071110043), and National Key Research and Development Program (2016YFC0902400, 2017YFSF090207).

References

  1. 1.
    Wang J, Jin M, Ma WH, Zhu Z, Wang X. The history of Telocyte discovery and understanding. Adv Exp Med Biol. 2016;913:1–21. [Pubmed:27796877]CrossRefPubMedGoogle Scholar
  2. 2.
    Popescu LM, Faussone-Pellegrini MS. TELOCYTES - a case of serendipity: the winding way from interstitial cells of Cajal (ICC), via interstitial Cajal-like cells (ICLC) to TELOCYTES. J Cell Mol Med. 2010;14:729–40. [Pubmed:20367664]CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Faussone Pellegrini MS. C Cortesini and P Romagnoli. [Ultrastructure of the tunica muscularis of the cardial portion of the human esophagus and stomach, with special reference to the so-called Cajal’s interstitial cells]. Arch Ital Anat Embriol. 1977;82:157–77. [Pubmed:613989]PubMedGoogle Scholar
  4. 4.
    Thuneberg L. Interstitial cells of Cajal: intestinal pacemaker cells? Adv Anat Embryol Cell Biol. 1982;71:1–130. [Pubmed:7090872]CrossRefPubMedGoogle Scholar
  5. 5.
    Popescu LM, Ciontea SM, Cretoiu D, Hinescu ME, Radu E, Ionescu N, Ceausu M, Gherghiceanu M, Braga RI, Vasilescu F, Zagrean L, Ardeleanu C. Novel type of interstitial cell (Cajal-like) in human fallopian tube. J Cell Mol Med. 2005;9:479–523. [Pubmed:15963270]CrossRefPubMedGoogle Scholar
  6. 6.
    van der Scheer HT, Doelman A. Synapse fits neuron: joint reduction by model inversion. Biol Cybern. 2017;111:309–34. [Pubmed:28689352]CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Vandecasteele T, Cornillie P, Vandevelde K, Logothetidou A, Couck L, van Loon G, Van den Broeck W. Presence of ganglia and telocytes in proximity to myocardial sleeve tissue in the porcine pulmonary Veins Wall. Anat Histol Embryol. 2017;46:325–33. [Pubmed:28421621]CrossRefPubMedGoogle Scholar
  8. 8.
    Kucybala I, Janas P, Ciuk S, Cholopiak W, Klimek-Piotrowska W, Holda MK. A comprehensive guide to telocytes and their great potential in cardiovascular system. Bratisl Lek Listy. 2017;118:302–9. [Pubmed:28516795]PubMedGoogle Scholar
  9. 9.
    Song D, Cretoiu D, Cretoiu SM, Wang X. Telocytes and lung disease. Histol Histopathol. 2016;31:1303–14. [Pubmed:27463150]PubMedGoogle Scholar
  10. 10.
    Ibba-Manneschi L, Rosa I, Manetti M. Telocyte implications in human pathology: an overview. Semin Cell Dev Biol. 2016;55:62–9. [Pubmed:26805444]CrossRefPubMedGoogle Scholar
  11. 11.
    Faussone-Pellegrini MS, Bani D. Relationships between telocytes and cardiomyocytes during pre- and post-natal life. J Cell Mol Med. 2010;14:1061–3. [Pubmed:20455994]PubMedPubMedCentralGoogle Scholar
  12. 12.
    Zheng Y, Wang X. Roles of Telocytes in the development of angiogenesis. Adv Exp Med Biol. 2016;913:253–61. [Pubmed:27796893]CrossRefPubMedGoogle Scholar
  13. 13.
    Popescu LM, Manole CG, Gherghiceanu M, Ardelean A, Nicolescu MI, Hinescu ME, Kostin S. Telocytes in human epicardium. J Cell Mol Med. 2010;14:2085–93. [Pubmed:20629996]CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Popescu LM, Gherghiceanu M, Suciu LC, Manole CG, Hinescu ME. Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy. Cell Tissue Res. 2011;345:391–403. [Pubmed:21858462]CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Song D, Cretoiu D, Zheng M, Qian M, Zhang M, Cretoiu SM, Chen L, Fang H, Popescu LM, Wang X. Comparison of chromosome 4 gene expression profile between lung telocytes and other local cell types. J Cell Mol Med. 2016;20:71–80. [Pubmed:26678350]CrossRefPubMedGoogle Scholar
  16. 16.
    Zheng Y, Cretoiu D, Yan G, Cretoiu SM, Popescu LM, Fang H, Wang X. Protein profiling of human lung telocytes and microvascular endothelial cells using iTRAQ quantitative proteomics. J Cell Mol Med. 2014;18:1035–59. [Pubmed:25059386]CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zheng Y, Cretoiu D, Yan G, Cretoiu SM, Popescu LM, Wang X. Comparative proteomic analysis of human lung telocytes with fibroblasts. J Cell Mol Med. 2014;18:568–89. [Pubmed:24674459]CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zheng Y, Zhang M, Qian M, Wang L, Cismasiu VB, Bai C, Popescu LM, Wang X. Genetic comparison of mouse lung telocytes with mesenchymal stem cells and fibroblasts. J Cell Mol Med. 2013;17:567–77. [Pubmed:23621815]CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wang DC, Wang X. Systems heterogeneity: an integrative way to understand cancer heterogeneity. Semin Cell Dev Biol. 2017;64:1–4. [Pubmed:27552921]CrossRefPubMedGoogle Scholar
  20. 20.
    Ye L, D Song, M Jin, X Wang. Therapeutic roles of telocytes in OVA-induced acute asthma in mice. J Cell Mol Med. 2017. [Pubmed:28524369]Google Scholar
  21. 21.
    Zhaofu L, Dongqing C. Cardiac telocytes in regeneration of myocardium after myocardial infarction. Adv Exp Med Biol. 2016;913:229–39. [Pubmed:27796891]CrossRefPubMedGoogle Scholar
  22. 22.
    Radu BM, Banciu A, Banciu DD, Radu M, Cretoiu D, Cretoiu SM. Calcium signaling in interstitial cells: focus on telocytes. Int J Mol Sci. 2017;18(2):E397. [Pubmed:28208829]CrossRefPubMedGoogle Scholar
  23. 23.
    Diaz-Flores L, Gutierrez R, Garcia MP, Gonzalez M, Saez FJ, Aparicio F, Diaz-Flores L Jr, Madrid JF. Human resident CD34+ stromal cells/telocytes have progenitor capacity and are a source of alphaSMA+ cells during repair. Histol Histopathol. 2015;30:615–27. [Pubmed:25500909]PubMedGoogle Scholar
  24. 24.
    Manetti M, Guiducci S, Ruffo M, Rosa I, Faussone-Pellegrini MS, Matucci-Cerinic M, Ibba-Manneschi L. Evidence for progressive reduction and loss of telocytes in the dermal cellular network of systemic sclerosis. J Cell Mol Med. 2013;17:482–96. [Pubmed:23444845]CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Salin K, Villasevil EM, Auer SK, Anderson GJ, Selman C, Metcalfe NB, Chinopoulos C. Simultaneous measurement of mitochondrial respiration and ATP production in tissue homogenates and calculation of effective P/O ratios. Physiol Rep. 2016;4(20):pii: e13007. [Pubmed:27798358]Google Scholar
  26. 26.
    Layec G, Bringard A, Le Fur Y, Micallef JP, Vilmen C, Perrey S, Cozzone PJ, Bendahan D. Opposite effects of hyperoxia on mitochondrial and contractile efficiency in human quadriceps muscles. Am J Physiol Regul Integr Comp Physiol. 2015;308:R724–33. [Pubmed:25695290]CrossRefPubMedGoogle Scholar
  27. 27.
    Pham T, Loiselle D, Power A, Hickey AJ. Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart. Am J Physiol Cell Physiol. 2014;307:C499–507. [Pubmed:24920675]CrossRefPubMedGoogle Scholar
  28. 28.
    Conley KE. Mitochondria to motion: optimizing oxidative phosphorylation to improve exercise performance. J Exp Biol. 2016;219:243–9. [Pubmed:26792336]CrossRefPubMedGoogle Scholar
  29. 29.
    Ghanizadeh Kazerouni E, Franklin CE, Seebacher F. UV-B exposure reduces locomotor performance by impairing muscle function but not mitochondrial ATP production. J Exp Biol. 2016;219:96–102. [Pubmed:26567351]CrossRefPubMedGoogle Scholar
  30. 30.
    Iorio R, Castellucci A, Rossi G, Cinque B, Cifone MG, Macchiarelli G, Cecconi S. Mancozeb affects mitochondrial activity, redox status and ATP production in mouse granulosa cells. Toxicol In Vitro. 2015;30:438–45. [Pubmed:26407525]CrossRefPubMedGoogle Scholar
  31. 31.
    Morgan DJ, Poolman TM, Williamson AJ, Wang Z, Clark NR, Ma’ayan A, Whetton AD, Brass A, Matthews LC, Ray DW. Glucocorticoid receptor isoforms direct distinct mitochondrial programs to regulate ATP production. Sci Rep. 2016;6:26419. [Pubmed:27226058]CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wang K, Zhou LY, Wang JX, Wang Y, Sun T, Zhao B, Yang YJ, An T, Long B, Li N, Liu CY, Gong Y, Gao JN, Dong YH, Zhang J, Li PF. E2F1-dependent miR-421 regulates mitochondrial fragmentation and myocardial infarction by targeting Pink1. Nat Commun. 2015;6:7619. [Pubmed:26184432]CrossRefPubMedGoogle Scholar
  33. 33.
    Chevalier A, Alam MP, Khdour OM, Schmierer M, Arce PM, Cripe CD, Hecht SM. Optimization of pyrimidinol antioxidants as mitochondrial protective agents: ATP production and metabolic stability. Bioorg Med Chem. 2016;24:5206–20. [Pubmed:27624526]CrossRefPubMedGoogle Scholar
  34. 34.
    Xue Y, Schmollinger S, Attar N, Campos OA, Vogelauer M, Carey MF, Merchant SS, Kurdistani SK. Endoplasmic reticulum-mitochondria junction is required for iron homeostasis. J Biol Chem. 2017;292:13197–204. [Pubmed:28637866]CrossRefPubMedGoogle Scholar
  35. 35.
    Filadi R, Theurey P, Pizzo P. The endoplasmic reticulum-mitochondria coupling in health and disease: molecules, functions and significance. Cell Calcium. 2017;62:1–15. [Pubmed:28108029]CrossRefPubMedGoogle Scholar
  36. 36.
    Zhao L, Lu T, L Gao XF, Zhu S, Hou Y. Enriched endoplasmic reticulum-mitochondria interactions result in mitochondrial dysfunction and apoptosis in oocytes from obese mice. J Anim Sci Biotechnol. 2017;8:62. [Pubmed:28781772]CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yang F, Yu X, Li T, Wu J, Zhao Y, Liu J, Sun A, Dong S, Wu J, Zhong X, Xu C, Lu F, Zhang W. Exogenous H2S regulates endoplasmic reticulum-mitochondria cross-talk to inhibit apoptotic pathways in STZ-induced type I diabetes. Am J Physiol Endocrinol Metab. 2017;312:E190–203. [Pubmed:27998959]CrossRefPubMedGoogle Scholar
  38. 38.
    Missiroli S, Danese A, Iannitti T, Patergnani S, Perrone M, Previati M, Giorgi C, Pinton P. Endoplasmic reticulum-mitochondria Ca2+ crosstalk in the control of the tumor cell fate. Biochim Biophys Acta. 2017;1864:858–64. [Pubmed:28064002]CrossRefPubMedGoogle Scholar
  39. 39.
    Tao L, Wang H, Wang X, Kong X, Li X. Cardiac Telocytes. Curr Stem Cell Res Ther. 2016;11:404–9. [Pubmed:25584905]CrossRefPubMedGoogle Scholar
  40. 40.
    Ha TK, Jung I, Kim ME, Bae SK, Lee JS. Anti-cancer activity of myricetin against human papillary thyroid cancer cells involves mitochondrial dysfunction-mediated apoptosis. Biomed Pharmacother. 2017;91:378–84. [Pubmed:28463801]CrossRefPubMedGoogle Scholar
  41. 41.
    Jo S, Ha TK, Han SH, Kim ME, Jung I, Lee HW, Bae SK, Lee JS. Myricetin induces apoptosis of human anaplastic thyroid cancer cells via mitochondria dysfunction. Anticancer Res. 2017;37:1705–10. [Pubmed:28373432CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang YX, Yu PF, Gao ZM, Yuan J, Zhang Z. Caffeic acid n-butyl ester-triggered necrosis-like cell death in lung cancer cell line A549 is prompted by ROS mediated alterations in mitochondrial membrane potential. Eur Rev Med Pharmacol Sci. 2017;21:1665–71. [Pubmed:28429338]PubMedGoogle Scholar
  43. 43.
    Zekri A, Mesbahi Y, Ghanizadeh-Vesali S, Alimoghaddam K, Ghavamzadeh A, Ghaffari SH. Reactive oxygen species generation and increase in mitochondrial copy number: new insight into the potential mechanism of cytotoxicity induced by aurora kinase inhibitor, AZD1152-HQPA. Anticancer Drugs. 2017;28(8):841–51. [Pubmed:28639950]CrossRefPubMedGoogle Scholar
  44. 44.
    Matsuura TR, Bartos JA, Tsangaris A, Shekar KC, Olson MD, Riess ML, Bienengraeber M, Aufderheide TP, Neumar RW, Rees JN, McKnite SH, Dikalova AE, Dikalov SI, Douglas HF, Yannopoulos D. Early effects of prolonged cardiac arrest and ischemic postconditioning during cardiopulmonary resuscitation on cardiac and brain mitochondrial function in pigs. Resuscitation. 2017;116:8–15. [Pubmed:28408349]CrossRefPubMedGoogle Scholar
  45. 45.
    Cretoiu SM. Immunohistochemistry of telocytes in the uterus and fallopian tubes. Adv Exp Med Biol. 2016;913:335–57. [Pubmed:27796898]CrossRefPubMedGoogle Scholar
  46. 46.
    Black GE, Sokol KK, Moe DM, Simmons J, Muscat D, Pastukh V, Capley G, Gorodnya O, Ruchko M, Roth MB, Gillespie M, Martin MJ. Impact of a novel PI3-KINASE inhibitor in preventing mitochondrial DNA damage and damage associated molecular pattern accumulation: results from the biochronicity project. J Trauma Acute Care Surg. 2017. [Pubmed:28538623]Google Scholar
  47. 47.
    Kirches E. MtDNA as a cancer marker: a finally closed chapter? Curr Genomics. 2017;18:255–67. [Pubmed:28659721].CrossRefPubMedGoogle Scholar
  48. 48.
    Zheng Y, Bai C, Wang X. Potential significance of telocytes in the pathogenesis of lung diseases. Expert Rev Respir Med. 2012;6:45–9. [Pubmed:22283578]CrossRefPubMedGoogle Scholar
  49. 49.
    Liu R, Xu F, Si S, Zhao X, Bi S, Cen Y. Mitochondrial DNA-induced inflammatory responses and lung injury in thermal injury rat model: protective effect of epigallocatechin gallate. J Burn Care Res. 2017. [Pubmed:28198717]Google Scholar
  50. 50.
    Chu MP, Kriangkum J, Venner CP, Sandhu I, Hewitt J, Belch AR, Pilarski LM. Addressing heterogeneity of individual blood cancers: the need for single cell analysis. Cell Biol Toxicol. 2017;33(2):83–97. PMID: 27761761CrossRefPubMedGoogle Scholar
  51. 51.
    Wang W, Gao D, Wang X. Can single-cell RNA sequencing crack the mystery of cells? Cell Biol Toxicol. 2017. https://doi.org/10.1007/s10565-017-9404-y. PMID: 28733864
  52. 52.
    Wang W, Zhu B, Wang X. Dynamic phenotypes: illustrating a single-cell odyssey. Cell Biol Toxicol. 2017;33(5):423–7. PMID: 28638956CrossRefGoogle Scholar
  53. 53.
    Wang W, Wang X. Single-cell CRISPR screening in drug resistance. Cell Biol Toxicol. 2017;33(3):207–10. https://doi.org/10.1007/s10565-017-9396-7. PMID: 28474250CrossRefPubMedGoogle Scholar
  54. 54.
    Gu J, Wang X. New future of cell biology and toxicology: thinking deeper. Cell Biol Toxicol. 2016;32(1):1–3. PMID: 26874518CrossRefPubMedGoogle Scholar
  55. 55.
    Fang H, Wang W. Could CRISPR be the solution for gene editing’s Gordian knot? Cell Biol Toxicol. 2016;32(6):465–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Paes BCMF, Moço PD, Pereira CG, Porto GS, de Sousa Russo EM, Reis LCJ, Covas DT, Picanço-Castro V. Ten years of iPSC: clinical potential and advances in vitro hematopoietic differentiation. Cell Biol Toxicol. 2017;33(3):233–50. https://doi.org/10.1007/s10565-016-9377-2. PMID: 28039590CrossRefPubMedGoogle Scholar
  57. 57.
    Kumar D, Anand T, Kues WA. Clinical potential of human-induced pluripotent stem cells: perspectives of induced pluripotent stem cells. Cell Biol Toxicol. 2017;33(2):99–112. PMID: 27900567CrossRefPubMedGoogle Scholar
  58. 58.
    Wang X. New biomarkers and therapeutics can be discovered during COPD-lung cancer transition. Cell Biol Toxicol. 2016;32(5):359–61. PMID: 27405768CrossRefPubMedGoogle Scholar
  59. 59.
    Chen C, Shi L, Li Y, Wang X, Yang S. Disease-specific dynamic biomarkers selected by integrating inflammatory mediators with clinical informatics in ARDS patients with severe pneumonia. Cell Biol Toxicol. 2016;32(3):169–84. PMID: 27095254CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Zhu D, Liu Z, Pan Z, Qian M, Wang L, Zhu T, Xue Y, Wu DA. New method for classifying different phenotypes of kidney transplantation. Cell Biol Toxicol. 2016;32(4):323–32. PMID: 27278387CrossRefPubMedGoogle Scholar
  61. 61.
    Bao L, Zhang Y, Wang J, Wang H, Dong N, Su X, Xu M, Wang X. Variations of chromosome 2 gene expressions among patients with lung cancer or non-cancer. Cell Biol Toxicol. 2016;32(5):419–35. PMID: 27301951CrossRefPubMedGoogle Scholar
  62. 62.
    Bao L, Diao H, Dong N, Su X, Wang B, Mo Q, Yu H, Wang X, Chen C. Histone deacetylase inhibitor induces cell apoptosis and cycle arrest in lung cancer cells via mitochondrial injury and p53 up-acetylation. Cell Biol Toxicol. 2016;32(6):469–82. PMID: 27423454CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Wang XCBT. Profiles of cabozantinib approved for advanced renal cell carcinomas. Cell Biol Toxicol. 2016;32(4):259–61. PMID: 27383755CrossRefPubMedGoogle Scholar
  64. 64.
    Giromini C, Rebucci R, Fusi E, Rossi L, Saccone F, Baldi A. Cytotoxicity, apoptosis, DNA damage and methylation in mammary and kidney epithelial cell lines exposed to ochratoxin a. Cell Biol Toxicol. 2016;32(3):249–58. PMID: 27154019CrossRefPubMedGoogle Scholar
  65. 65.
    Kang SJ, Lee HM, Park YI, Yi H, Lee H, So B, Song JY, Kang HG. Chemically induced hepatotoxicity in human stem cell-induced hepatocytes compared with primary hepatocytes and HepG2. Cell Biol Toxicol. 2016;32(5):403–17. PMID: 27287938CrossRefPubMedGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s) 2018 2017

Authors and Affiliations

  1. 1.Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical CollegeShanghaiChina
  2. 2.Shanghai Institute of Clinical BioinformaticsShanghaiChina
  3. 3.Division of Cellular and Molecular Biology and Histology, Department of Morphological SciencesCarol Davila University of Medicine and PharmacyBucharestRomania
  4. 4.Victor Babeş National Institute of PathologyBucharestRomania

Personalised recommendations