Metabolic Regulation in Mitochondria and Drug Resistance

  • Yue Pan
  • Min Cao
  • Jianzhou Liu
  • Qing Yang
  • Xiaoyu Miao
  • Vay Liang W. Go
  • Paul W. N. Lee
  • Gary Guishan Xiao
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1038)

Abstract

Mitochondria are generally considered as a powerhouse in a cell where the majority of the cellular ATP and metabolite productions occur. Metabolic rewiring and reprogramming may be initiated and regulated by mitochondrial enzymes. The hypothesis that cellular metabolic rewiring and reprogramming processes may occur as cellular microenvironment is disturbed, resulting in alteration of cell phenotype, such as cancer cells resistant to therapeutics seems to be now acceptable. Cancer metabolic reprogramming regulated by mitochondrial enzymes is now one of the hallmarks of cancer. This chapter provides an overview of cancer metabolism and summarizes progress made in mitochondria-mediated metabolic regulation in cancer drug resistance.

Keywords

Mitochondrial Metabolism Drug resistance Signaling pathway 

Notes

Acknowledgments

The work was supported by the Dalian University of Technology Distinguished Professor Grant (Gary Guishan Xiao), the National Natural Science Foundation of China (81770846, 81642006, 81272430), Agi Hirshberg international pancreatic disease center funds (H2015PC01), talent introduction funds of Dalian University of Technology (852004), and major research projects of Dalian University of Technology (DUT17ZD308).

References

  1. 1.
    Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat Rev Genet. 2005;6(5):389–402. [PubMed: 15861210]CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Falk MJ, Sondheimer N. Mitochondrial genetic diseases. Curr Opin Pediatr. 2010;22(6):711–6. [PubMed: 21045694]CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T, Yang Y, Linehan WM, Chandel NS, DeBerardinis RJ. Suppression of human tumor cell proliferation through mitochondrial targeting. FASEB J. 2002;16(9):1010–6. [PubMed: 12087062]CrossRefGoogle Scholar
  4. 4.
    Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T, et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature. 2011;481(7381):385–8. [PubMed: 22101431]PubMedPubMedCentralGoogle Scholar
  5. 5.
    Tan AS, Baty JW, Dong LF, Bezawork-Geleta A, Endaya B, Goodwin J, Bajzikova M, Kovarova J, Peterka M, Yan B, Bezawork-Geleta A, Endaya B, Goodwin J, et al. Mitochondrial genome acquisition restores respiratory function and tumori-genic potential of cancer cells without mitochondrial DNA. Cell Metab. 2015;21(1):81–94. [PubMed: 25565207]CrossRefPubMedGoogle Scholar
  6. 6.
    Bao L, Zhang Y, Wang J, Wang H, Dong N, Su X, Xu M, Wang X. Variations of chromosome 2 gene expressions among patients with lung cancer or non-cancer. Cell Biol Toxicol. 2016;32(5):419–35. [PMID: 27301951]CrossRefPubMedGoogle Scholar
  7. 7.
    Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethumadhavan S, Woo HK, Jang HG, Jha AK, et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature. 2011;476(7360):346–50. [PubMed: 21760589]CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sellers K, Fox MP, Bousamra M 2nd, Slone SP, Higashi RM, Miller DM, Wang Y, Yan J, Yuneva MO, Deshpande R, et al. Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J Clin Invest. 2015;125(2):687–98. [PubMed: 25607840]CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Shi L, Wang LY, Wang BB, Cretoiu SM, Wang Q, Wang XD, Chen CS. Regulatory mechanism of betacellulin in CXCL8 production from lung cancer cells through EGFR-PI3K pathway. J Transl Med. 2014;12:70. [PMID: 24629040]CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Pelicano H, Martin DS, RH X, Huang P. Glycolysis inhibition for anticancer treatment. Oncogene. 2006;25(34):4633–46. [PubMed: 16892078]CrossRefPubMedGoogle Scholar
  11. 11.
    Levine AJ, Puzio-Kuter AM. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science. 2010;330(6009):1340–4. [PubMed: 21127244]CrossRefPubMedGoogle Scholar
  12. 12.
    Bonuccelli G, Tsirigos A, Whitaker-Menezes D, Pavlides S, Pestell RG, Chiavarina B, Frank PG, Flomenberg N, Howell A, Martinez-Outschoorn UE, et al. Ketones and lactate “fuel” tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle. 2010;9(17):3506–14. [PubMed: 20818174]CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ, Huang P. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res. 2005;65(2):613–21. [PubMed: 15695406]PubMedGoogle Scholar
  14. 14.
    Thomas PD, Kahn M. Kat3 coactivators in somatic stem cells and cancer stem cells: biological roles, evolution, and pharmacologic manipulation. Cell Biol Toxicol. 2016;32(1):61–81. [PMID: 27008332]CrossRefPubMedGoogle Scholar
  15. 15.
    DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv. 2016;2(5):e1600200. [PubMed: 27386546]CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Seo JB, Jung SR, Hille B, Koh DS, Extracellular ATP. protects pancreatic duct epithelial cells from alcohol-induced damage through P2Y1 receptor-cAMP signal pathway. Cell Biol Toxicol. 2016;32(3):229–47. [PMID: 27197531]CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hardie DG, Schaffer BE, Brunet A. AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol. 2016;26(3):190–201. [PubMed: 26616193]CrossRefPubMedGoogle Scholar
  18. 18.
    DeBerardinis RJ, Sayed N, Ditsworth D, Thompson CB. Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev. 2008;18:54–61. [PubMed: 18387799]CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11:85–95. [PubMed: 21258394]CrossRefPubMedGoogle Scholar
  20. 20.
    Warburg O, Posener K, Negelein E, Über den Stoffwechsel d. Karzinomzellen. Biochem Z. 1924;152:309–44.Google Scholar
  21. 21.
    Warburg O. On the origin of cancer cells. Science (New York, NY). 1956;123:309–14. [PubMed: 13298683]CrossRefGoogle Scholar
  22. 22.
    Semenza GL, Artemov D, Bedi A, Bhujwalla Z, Chiles K, Feldser D, Laughner E, Ravi R, Simons J, Taghavi P, et al. ‘The metabolism of tumours’: 70 years later. Novartis Found Symp. 2001;240:251–60. discussion 260- 254. [PubMed: 11727934]CrossRefPubMedGoogle Scholar
  23. 23.
    Gogvadze V, Zhivotovsky B, Orrenius S. The Warburg effect and mitochondrial stability in cancer cells. Mol Asp Med. 2010;31:60–74. [PubMed: 19995572]CrossRefGoogle Scholar
  24. 24.
    Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell. 2008;13:472–82. [PubMed: 18538731]CrossRefPubMedGoogle Scholar
  25. 25.
    Salway JG. Metabolism at a glance. Oxford: Blackwell Science; 2000.Google Scholar
  26. 26.
    Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (New York, NY). 2009;324:1029–33. [PubMed: 19460998]CrossRefGoogle Scholar
  27. 27.
    Som P, Atkins HL, Bandoypadhyay D, Fowler JS, MacGregor RR, Matsui K, Oster ZH, Sacker DF, Shiue CY, Turner H, et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F- 18): nontoxic tracer for rapid tumor detection. J Nucl Med. 1980;21:670–5. [PubMed: 7391842]PubMedGoogle Scholar
  28. 28.
    Courtnay R, Ngo DC, Malik N, Ververis K, Tortorella SM, Karagiannis TC. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K. Mol Biol Rep. 2015;42:841–51. [PubMed: 25689954]CrossRefPubMedGoogle Scholar
  29. 29.
    Bayley JP, Devilee P. The Warburg effect in 2012. Curr Opin Oncol. 2012;24:62–7. [PubMed: 22123234]CrossRefPubMedGoogle Scholar
  30. 30.
    Yeung SJ, Pan J, Lee MH. Roles of p53, MYC and HIF- 1 in regulating glycolysis – the seventh hallmark of cancer. Cell Mol Life Sci. 2008;65:3981–99. [PubMed: 18766298]CrossRefPubMedGoogle Scholar
  31. 31.
    Li J, Zhu S, Tong J, Hao H, Yang J, Liu Z, Wang Y. Suppression of lactate dehydrogenase a compromises tumor progression by downregulation of the Warburg effect in glioblastoma. Neuroreport. 2016;27:110–5. [PubMed: 26694942]CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci. 2016;41:211–8. [PubMed: 26778478]CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yamamoto T, Seino Y, Fukumoto H, Koh G, Yano H, Inagaki N, Yamada Y, Inoue K, Manabe T, Imura H. Over-expression of facilitative glucose transporter genes in human cancer. Biochem Biophys Res Commun. 1990;170:223–30. [PubMed: 2372287]CrossRefPubMedGoogle Scholar
  34. 34.
    Altenberg B, Greulich KO. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics. 2004;84:1014–20. [PubMed: 15533718]CrossRefPubMedGoogle Scholar
  35. 35.
    Levine AJ, Puzio-Kuter AM. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science (New York, NY). 2010;330:1340–4. [PubMed: 21127244]CrossRefGoogle Scholar
  36. 36.
    Cerella C, Dicato M, Diederich M. Modulatory roles of glycolytic enzymes in cell death. Biochem Pharmacol. 2014;92:22–30. [PubMed: 25034412]CrossRefPubMedGoogle Scholar
  37. 37.
    Lippai M, Szatmári Z. Autophagy-from molecular mechanisms to clinical relevance. Cell Biol Toxicol. 2017;33(2):145–68. [PMID: 27957648]CrossRefPubMedGoogle Scholar
  38. 38.
    Pastorino JG, Shulga N, Hoek JB. Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem. 2002;277:7610–8. [PubMed: 11751859]CrossRefPubMedGoogle Scholar
  39. 39.
    Patra KC, Hay N. The pentose phosphate pathway and cancer. Trends Biochem Sci. 2014;39:347–54. [PubMed: 25037503]CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Boros LG, Puigjaner J, Cascante M, Lee WN, Brandes JL, Bassilian S, Yusuf FI, Williams RD, Muscarella P, Melvin WS, et al. Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation. Cancer Res. 1997;57:4242–8. [PubMed: 9331084]PubMedGoogle Scholar
  41. 41.
    Tudzarova S, Colombo SL, Stoeber K, Carcamo S, Williams GH, Moncada S. Two ubiquitin ligases, APC/C-Cdh1 and SKP1-CUL1-F (SCF)-beta-TrCP, sequentially regulate glycolysis during the cell cycle. Proc Natl Acad Sci U S A. 2011;108:5278–83. [PubMed: 21402913]CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Santos CR, Schulze A. Lipid metabolism in cancer. FEBS J. 2012;279:2610–23. [PubMed: 22621751]CrossRefPubMedGoogle Scholar
  43. 43.
    Porstmann T, Griffiths B, Chung YL, Delpuech O, Griffiths JR, Downward J, Schulze A. PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene. 2005;24:6465–81. [PubMed: 16007182]CrossRefPubMedGoogle Scholar
  44. 44.
    Yuan HX, Xiong Y, Guan KL. Nutrient sensing, metabolism, and cell growth control. Mol Cell. 2013;49:379–87. [PubMed: 23395268]CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Tsun ZY, Possemato R. Amino acid management in cancer. Semin Cell Dev Biol. 2015;43:22–32. [PubMed: 26277542]CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    P G, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458:762–5. [PubMed: 19219026]CrossRefGoogle Scholar
  47. 47.
    Kim J, Lee JH, Iyer VR. Global identification of Myc target genes reveals its direct role in mitochondrial biogenesis and its E-box usage in vivo. PLoS One. 2008;3:e1798. [PubMed: 18335064]CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Zhu M, Wang N, Tsao SW, Yuen MF, Feng Y, Wan TS, Man K. Up-regulation of microRNAs, miR21 and miR23a in human liver cancer cells treated with Coptidis rhizoma aqueous extract. Exp Ther Med. 2011;2:27–32. [PubMed: 22977465]CrossRefPubMedGoogle Scholar
  49. 49.
    Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, Myer VE, MacKeigan JP, Porter JA, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. 2009;136:521–34. [PubMed: 19203585]CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer. 2013;13:572–83. [PubMed: 23822983]CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    di Salvo ML, Contestabile R, Paiardini A, Maras B. Glycine consumption and mitochondrial serine hydroxymethyltransferase in cancer cells: the heme connection. Med Hypotheses. 2013;80:633–6. [PubMed: 23474074]CrossRefPubMedGoogle Scholar
  52. 52.
    Phang JM, Liu W, Hancock CN, Fischer JW. Proline metabolism and cancer: emerging links to glutamine and collagen. Curr Opin Clin Nutr Metab Care. 2015;18:71–7. [PubMed: 25474014]CrossRefPubMedGoogle Scholar
  53. 53.
    Liu W, Phang JM. Proline dehydrogenase (oxidase) in cancer. Biofactors. 2012;38:398–406. [PubMed: 22886911]CrossRefPubMedGoogle Scholar
  54. 54.
    Daye D, Wellen KE. Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin Cell Dev Biol. 2012;23:362–9. [PubMed: 22349059]CrossRefPubMedGoogle Scholar
  55. 55.
    Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci. 2010;35:427–33. [PubMed: 20570523]CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    MO Y, Fan TW, Allen TD, Higashi RM, Ferraris DV, Tsukamoto T, Matés JM, Alonso FJ, Wang C, Seo Y, et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 2012;15:157–70. [PubMed: 22326218]CrossRefGoogle Scholar
  57. 57.
    Iacobazzi V, Infantino V. Citrate—new functions for an old metabolite. Biol Chem. 2014;395:387–99. [PubMed: 24445237]CrossRefPubMedGoogle Scholar
  58. 58.
    Boulahbel H, Duran RV, Gottlieb E. Prolyl hydroxylases as regulators of cell metabolism. Biochem Soc Trans. 2009;37:291–4. [PubMed: 19143649]CrossRefPubMedGoogle Scholar
  59. 59.
    DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A. 2007;104:19345–50. [PubMed: 18032601]CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    XL Z, Guppy M. Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun. 2004;313:459–65. [PubMed: 14697210]CrossRefGoogle Scholar
  61. 61.
    Yang C, Sudderth J, Dang T, Bachoo RM, McDonald JG, DeBerardinis RJ. Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res. 2009;69:7986–93. [PubMed: 19826036]CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 2012;481:380–4. [PubMed: 22101433]Google Scholar
  63. 63.
    Wallace DC. Mitochondria and cancer. Nat Rev Cancer. 2012;12:685–98. [PubMed: 23001348]CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Acin-Perez R, Enriquez JA. The function of the respiratory supercomplexes: the plasticity model. Biochim Biophys Acta. 2014;1837:444–50. [PubMed: 24368156]CrossRefPubMedGoogle Scholar
  65. 65.
    Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19:17–30. [PubMed: 21251613]CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, Yu W, Li Z, Gong L, Peng Y, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science (New York, NY). 2009;324:261–5. [PubMed: 19359588]CrossRefGoogle Scholar
  67. 67.
    Losman JA, Kaelin WG Jr. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev. 2013;27:836–52. [PubMed: 23630074]CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Rahman M, Hasan MR. Cancer metabolism and drug resistance. Metabolites. 2015;5:571–600. [PubMed: 26437434]CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Anderson M, Marayati R, Moffitt R, Yeh JJ. Hexokinase 2 promotes tumor growth and metastasis by regulating lactate production in pancreatic cancer. Oncotarget. 2016;2:3762–3. [PubMed: 27259263]Google Scholar
  70. 70.
    Colell A, Ricci JE, Tait S, Milasta S, Maurer U, Bouchier-Hayes L, Fitzgerald P, Guio-Carrion A, Waterhouse NJ, Li CW, et al. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell. 2007;129:983–97. [PubMed: 17540177]CrossRefPubMedGoogle Scholar
  71. 71.
    Lee DC, Sohn HA, Park ZY, Oh S, Kang YK, Lee KM, Kang M, Jang YJ, Yang SJ, Hong YK, et al. Article a lactate-induced response to hypoxia article alactate-Induced response to hypoxia. Cell. 2015;161:595–609. [PubMed: 25892225]CrossRefPubMedGoogle Scholar
  72. 72.
    Zhou M, Zhao Y, Ding Y, Liu H, Liu Z, Fodstad O, Riker AI, Kamarajugadda S, Lu J, Owen LB, et al. Warburg effect in chemosensitivity: targeting lactate dehydrogenase–A re-sensitizes Taxol-resistant cancer cells to Taxol. Mol Cancer. 2010;9:1–12. [PubMed: 20144215]Google Scholar
  73. 73.
    Nakano Y, Tanno S, Koizumi K, Nishikawa T, Nakamura K, Minoguchi M, Izawa T, Mizukami Y, et al. Gemcitabine chemo resistance and molecular markers associated with gemcitabine transport and metabolism in human pancreatic cancer cells. Br J Cancer. 2007;96:457–63. [PubMed: 17224927]CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 2012;71:4585–97.Google Scholar
  75. 75.
    Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R, Wilson KF, Ambrosio AL, Dias SM, Dang CV, et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell. 2011;18:207–19. [PubMed: 20832749]CrossRefGoogle Scholar
  76. 76.
    Greijer AE, van der Wall E. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J Clin Pathol. 2004;57:1009–14. [PubMed: 15452150]CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    He G, Jiang Y, Zhang B, Wu G. The effect of HIF-1 on glucose metabolism, growth and apoptosis of pancreatic cancerous cells. Asia Pac J Clin Nutr. 2014;23:174–80. [PubMed: 24561986]PubMedGoogle Scholar
  78. 78.
    Golias T, Papandreou I, Sun R, Kumar B, Brown NV, Swanson BJ, Pai R, Jaitin D, Le QT, Teknos TN, et al. Hypoxic repression of pyruvate dehydrogenase activity is necessary for metabolic reprogramming and growth of model tumours. Sci Rep. 2016;6:311–21. [PubMed: 27498883]CrossRefGoogle Scholar
  79. 79.
    Haas M, Heinemann V, Kullmann F, Laubender RP, Klose C, Bruns CJ, Holdenrieder S, Modest DP, Schulz C, Boeck S. Prognostic value of CA 19-9, CEA, CRP, LDH and bilirubin levels in locally advanced and metastatic pancreatic cancer: results from a multicenter, pooled analysis of patients receiving palliative chemotherapy. J Cancer Res Clin Oncol. 2013;139:681–9. [PubMed: 23315099]CrossRefPubMedGoogle Scholar
  80. 80.
    Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006;9:425–34. [PubMed: 16766262]CrossRefPubMedGoogle Scholar
  81. 81.
    Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nature. 2006;5:671–88. [PubMed: 16883305]CrossRefGoogle Scholar
  82. 82.
    Dowling RJ, Topisirovic I, Alain T, Bidinosti M, Fonseca BD, Petroulakis E, Wang X, Larsson O, Selvaraj A, Liu Y, et al. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science. 2010;328:1172–6. [PubMed: 20508131]CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Thomas GV, Tran C, Mellinghoff IK, Welsbie DS, Chan E, Fueger B, Czernin J, Sawyers CL. Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med. 2006;12:122–7. [PubMed: 16341243]CrossRefPubMedGoogle Scholar
  84. 84.
    Iriana S, Ahmed S, Gong J, Annamalai AA, Tuli R, Hendifar AE. Targeting mTOR in pancreatic ductal adenocarcinoma. Front Oncol. 2016;6:99. [PubMed: 27200288]CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Wang X. New biomarkers and therapeutics can be discovered during COPD-lung cancer transition. Cell Biol Toxicol. 2016;32(5):359–61. [PMID: 27405768]CrossRefPubMedGoogle Scholar
  86. 86.
    Gu J, Wang X. New future of cell biology and toxicology: thinking deeper. Cell Biol Toxicol. 2016;32(1):1–3. [PMID: 26874518]CrossRefPubMedGoogle Scholar
  87. 87.
    Wang X. CBT profiles of cabozantinib approved for advanced renal cell carcinomas. Cell Biol Toxicol. 2016;32(4):259–61. [PMID: 27383755]CrossRefPubMedGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s) 2018 2017

Authors and Affiliations

  • Yue Pan
    • 1
  • Min Cao
    • 1
  • Jianzhou Liu
    • 1
  • Qing Yang
    • 1
  • Xiaoyu Miao
    • 1
  • Vay Liang W. Go
    • 2
  • Paul W. N. Lee
    • 3
  • Gary Guishan Xiao
    • 1
    • 2
    • 3
    • 4
  1. 1.School of Pharmaceutical Science and TechnologyDalian University of TechnologyDalianChina
  2. 2.Agi Hirshberg UCLA Center for Pancreas Diseases, University of CaliforniaLos AngelesUSA
  3. 3.Harbor University of California Los Angeles Medical CenterTorranceUSA
  4. 4.Functional Genomics and Proteomics LaboratoriesCreighton University Medical CenterOmahaUSA

Personalised recommendations