Experimental Animal Models for Depressive Disorders: Relevance to Drug Discovery

  • Boldizsár Czéh
  • Ove Wiborg
  • Eberhard Fuchs


Major depressive disorder is a complex mental disorder imposing severe social and economic burden worldwide. Numerous animal models have been developed to elucidate the pathophysiology that underlies depression and to test novel antidepressant treatment strategies. Here, we provide a brief summary of the animal models that are typically used in experimental settings. We discuss genetic models, including the recently developed optogenetic tools as well as models based on stress exposure, such as the social stress, chronic mild stress, and early-life stress paradigms. Finally, we summarize their value in drug development.


Antidepressant Chronic stress Depression Drug development Mood disorder 


  1. Abramson L, Seligman MEP. Modeling psychopathology in the laboratory: history and rationale. In: Maser J, Seligman MEP, editors. Psychopathology: experimental models. San Francisco: Freeman and Company; 1977.Google Scholar
  2. Anisman H, Matheson K. Stress, depression, and anhedonia: caveats concerning animal models. Neurosci Biobehav Rev. 2005;29(4–5):525–46.PubMedCrossRefGoogle Scholar
  3. Barkus C. Genetic mouse models of depression. Curr Top Behav Neurosci. 2013;14:55–78.PubMedCrossRefGoogle Scholar
  4. Barnett SA. Physiological effects of social stress in wild rats. I. The adrenal cortex. J Psychosom Res. 1958;3(1):1–11.PubMedCrossRefGoogle Scholar
  5. Barnett SA. Social stress. The concept of stress. In: Carthy J, Duddington CL, editors. Viewpoints in biology, vol. 3. Butterworth: London; 1964. p. 170–218.Google Scholar
  6. Bartlang MS, Neumann ID, Slattery DA, Uschold-Schmidt N, Kraus D, Helfrich-Förster C, Reber SO. Time matters: pathological effects of repeated psychosocial stress during the active, but not inactive, phase of male mice. J Endocrinol. 2012;215(3):425–37.PubMedCrossRefGoogle Scholar
  7. Belzung C. Innovative drugs to treat depression: did animal models fail to be predictive or did clinical trials fail to detect effects? Neuropsychopharmacology. 2014;39(5):1041–51.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bergström A, Jayatissa MN, Mørk A, Wiborg O. Stress sensitivity and resilience in the chronic mild stress rat model of depression; an in situ hybridization study. Brain Res. 2008;1196:41–52.PubMedCrossRefGoogle Scholar
  9. Berton O, Hahn CG, Thase ME. Are we getting closer to valid translational models for major depression? Science. 2012;338(6103):75–9.PubMedCrossRefGoogle Scholar
  10. Berton O, Nestler EJ. New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci. 2006;7(2):137–51.PubMedCrossRefGoogle Scholar
  11. Bouwknecht JA. Behavioral studies on anxiety and depression in a drug discovery environment: keys to a successful future. Eur J Pharmacol. 2015;753:158–76.PubMedCrossRefGoogle Scholar
  12. Branda CS, Dymecki SM. Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev Cell. 2004;6(1):7–28.PubMedCrossRefGoogle Scholar
  13. Brown G. Life events and illness. In: Stanford S, Blanchard DC, editors. Stress: from synapse to syndrome. London: Academic Press; 1993. p. 20–40.Google Scholar
  14. Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku SM, Koo JW, Ferguson D, Tsai HC, Pomeranz L, Christoffel DJ, Nectow AR, Ekstrand M, Domingos A, Mazei-Robison MS, Mouzon E, Lobo MK, Neve RL, Friedman JM, Russo SJ, Deisseroth K, Nestler EJ, Han MH. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature. 2013;493(7433):532–6.PubMedCrossRefGoogle Scholar
  15. Christensen T, Bétry C, Mnie-Filali O, Etievant A, Ebert B, Haddjeri N, Wiborg O. Synergistic antidepressant-like action of gaboxadol and escitalopram. Eur Neuropsychopharmacol. 2012;22(10):751–60.PubMedCrossRefGoogle Scholar
  16. Covington HE, Lobo MK, Maze I, Vialou V, Hyman JM, Zaman S, LaPlant Q, Mouzon E, Ghose S, Tamminga CA, Neve RL, Deisseroth K, Nestler EJ. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J Neurosci. 2010;30(48):16082–90.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cryan JF, Holmes A. The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov. 2005;4(9):775–90.PubMedCrossRefGoogle Scholar
  18. Cryan JF, Markou A, Lucki I. Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci. 2002;23(5):238–45.PubMedCrossRefGoogle Scholar
  19. Cryan JF, Mombereau C. In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry. 2004;9(4):326–57.PubMedCrossRefGoogle Scholar
  20. Cryan JF, Mombereau C, Vassout A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev. 2005a;29(4–5):571–625.PubMedCrossRefGoogle Scholar
  21. Cryan JF, Slattery DA. Animal models of mood disorders: recent developments. Curr Opin Psychiatry. 2007;20(1):1–7.PubMedCrossRefGoogle Scholar
  22. Cryan JF, Valentino RJ, Lucki I. Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev. 2005b;29(4–5):547–69.PubMedCrossRefGoogle Scholar
  23. Czéh B, Fuchs E, Wiborg O, Simon M. Animal models of major depression and their clinical implications. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;64:293–310.CrossRefGoogle Scholar
  24. Daly M. Early stimulation of rodents: a critical review of present interpretations. Br J Psychol. 1973;64(3):435–60.PubMedCrossRefGoogle Scholar
  25. de Bodinat C, Guardiola-Lemaitre B, Mocaër E, Renard P, Muñoz C, Millan MJ. Agomelatine, the first melatonergic antidepressant: discovery, characterization and development. Nat Rev Drug Discov. 2010;9(8):628–42.PubMedCrossRefGoogle Scholar
  26. de Kloet ER, Molendijk ML. Coping with the forced swim stressor: towards understanding an adaptive mechanism. Neural Plast. 2016;2016:6503162.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Enthoven L, Oitzl MS, Koning N, van der Mark M, de Kloet ER. Hypothalamic-pituitary-adrenal axis activity of newborn mice rapidly desensitizes to repeated maternal absence but becomes highly responsive to novelty. Endocrinology. 2008;149(12):6366–77.PubMedCrossRefGoogle Scholar
  28. Fink G. In retrospect: eighty years of stress. Nature. 2016;539(7628):175–6.PubMedCrossRefGoogle Scholar
  29. Friedman AK, Walsh JJ, Juarez B, Ku SM, Chaudhury D, Wang J, Li X, Dietz DM, Pan N, Vialou VF, Neve RL, Yue Z, Han MH. Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience. Science. 2014;344(6181):313–9.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gold PW. The organization of the stress system and its dysregulation in depressive illness. Mol Psychiatry. 2015;20(1):32–47.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Harlow HF, Zimmermann RR. Affectional responses in the infant monkey; orphaned baby monkeys develop a strong and persistent attachment to inanimate surrogate mothers. Science. 1959;130(3373):421–32.PubMedCrossRefGoogle Scholar
  32. Healy D. The antidepressant era. Cambridge: Harvard University Press; 1999.Google Scholar
  33. Heidenreich M, Zhang F. Applications of CRISPR-Cas systems in neuroscience. Nat Rev Neurosci. 2016;17(1):36–44.PubMedCrossRefGoogle Scholar
  34. Heim C, Binder EB. Current research trends in early life stress and depression: review of human studies on sensitive periods, gene-environment interactions, and epigenetics. Exp Neurol. 2012;233(1):102–11.PubMedCrossRefGoogle Scholar
  35. Heim C, Nemeroff CB. The impact of early adverse experiences on brain systems involved in the pathophysiology of anxiety and affective disorders. Biol Psychiatry. 1999;46(11):1509–22.PubMedCrossRefGoogle Scholar
  36. Heim C, Shugart M, Craighead WE, Nemeroff CB. Neurobiological and psychiatric consequences of child abuse and neglect. Dev Psychobiol. 2010;52(7):671–90.PubMedCrossRefGoogle Scholar
  37. Heisler LK, Chu HM, Brennan TJ, Danao JA, Bajwa P, Parsons LH, Tecott LH. Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc Natl Acad Sci U S A. 1998;95(25):15049–54.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hollis F, Kabbaj M. Social defeat as an animal model for depression. ILAR J. 2014;55(2):221–32.PubMedCrossRefGoogle Scholar
  39. Holly EN, Shimamoto A, Debold JF, Miczek KA. Sex differences in behavioral and neural cross-sensitization and escalated cocaine taking as a result of episodic social defeat stress in rats. Psychopharmacology. 2012;224(1):179–88.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hyman SE. Revitalizing psychiatric therapeutics. Neuropsychopharmacology. 2014;39(1):220–9.PubMedCrossRefGoogle Scholar
  41. Insel TR, Voon V, Nye JS, Brown VJ, Altevogt BM, Bullmore ET, Goodwin GM, Howard RJ, Kupfer DJ, Malloch G, Marston HM, Nutt DJ, Robbins TW, Stahl SM, Tricklebank MD, Williams JH, Sahakian BJ. Innovative solutions to novel drug development in mental health. Neurosci Biobehav Rev. 2013;37(10 Pt 1):2438–2444.CrossRefGoogle Scholar
  42. Iwase S, Brookes E, Agarwal S, Badeaux AI, Ito H, Vallianatos CN, Tomassy GS, Kasza T, Lin G, Thompson A, Gu L, Kwan KY, Chen C, Sartor MA, Egan B, Xu J, Shi Y. A mouse model of X-linked intellectual disability associated with impaired removal of histone methylation. Cell Rep. 2016;14(5):1000–9.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Jacobson-Pick S, Audet MC, McQuaid RJ, Kalvapalle R, Anisman H. Social agonistic distress in male and female mice: changes of behavior and brain monoamine functioning in relation to acute and chronic challenges. PLoS One. 2013;8(4):e60133.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Jazayeri M, Afraz A. Navigating the neural space in search of the neural code. Neuron. 2017;93(5):1003–14.PubMedCrossRefGoogle Scholar
  45. Keller MC, Neale MC, Kendler KS. Association of different adverse life events with distinct patterns of depressive symptoms. Am J Psychiatry. 2007;164(10):1521–9.PubMedCrossRefGoogle Scholar
  46. Kessler RC, Bromet EJ. The epidemiology of depression across cultures. Annu Rev Public Health. 2013;34:119–38.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kim CK, Adhikari A, Deisseroth K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat Rev Neurosci. 2017;18(4):222–35.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Klengel T, Binder EB. Gene-environment interactions in major depressive disorder. Can J Psychiatr. 2013;58(2):76–83.CrossRefGoogle Scholar
  49. Koolhaas JM, de Boer SF, Buwalda B, Meerlo P. Social stress models in rodents: towards enhanced validity. Neurobiol Stress. 2016;6:104–12.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Koolhaas JM, De Boer SF, De Rutter AJ, Meerlo P, Sgoifo A. Social stress in rats and mice. Acta Physiol Scand Suppl. 1997;640:69–72.PubMedGoogle Scholar
  51. Lanius R, Vermetten E, Pain C, editors. The impact of early life trauma on health and desease: the hidden epidemic. 1st ed. Cambridge University Press: New York; 2010.Google Scholar
  52. Lehmann J, Feldon J. Long-term biobehavioral effects of maternal separation in the rat: consistent or confusing? Rev Neurosci. 2000;11(4):383–408.PubMedCrossRefGoogle Scholar
  53. Levine S. Infantile experience and resistance to physiological stress. Science. 1957;126(3270):405.PubMedCrossRefGoogle Scholar
  54. Levine S. Maternal and environmental influences on the adrenocortical response to stress in weanling rats. Science. 1967;156(3772):258–60.PubMedCrossRefGoogle Scholar
  55. Lucki I. The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behav Pharmacol. 1997;8(6–7):523–32.PubMedCrossRefGoogle Scholar
  56. Mandelli L, Petrelli C, Serretti A. The role of specific early trauma in adult depression: a meta-analysis of published literature. Childhood trauma and adult depression. Eur Psychiatry. 2015;30(6):665–80.PubMedCrossRefGoogle Scholar
  57. Mandelli L, Serretti A. Gene environment interaction studies in depression and suicidal behavior: an update. Neurosci Biobehav Rev. 2013;37(10):2375–97.PubMedCrossRefGoogle Scholar
  58. Marton TF, Sohal VS. Of mice, men, and microbial opsins: how optogenetics can help hone mouse models of mental illness. Biol Psychiatry. 2016;79(1):47–52.PubMedCrossRefGoogle Scholar
  59. McKinney WT Jr, Bunney WE Jr. Animal model of depression. I. Review of evidence: implications for research. Arch Gen Psychiatry. 1969;21(2):240–8.PubMedCrossRefGoogle Scholar
  60. Montkowski A, Barden N, Wotjak C, Stec I, Ganster J, Meaney M, Engelmann M, Reul JM, Landgraf R, Holsboer F. Long-term antidepressant treatment reduces behavioural deficits in transgenic mice with impaired glucocorticoid receptor function. J Neuroendocrinol. 1995;7(11):841–5.PubMedCrossRefGoogle Scholar
  61. Müller MB, Zimmermann S, Sillaber I, Hagemeyer TP, Deussing JM, Timpl P, Kormann MS, Droste SK, Kuhn R, Reul JM, Holsboer F, Wurst W. Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress. Nat Neurosci. 2003;6(10):1100–7.PubMedCrossRefGoogle Scholar
  62. Naninck EF, Hoeijmakers L, Kakava-Georgiadou N, Meesters A, Lazic SE, Lucassen PJ, Korosi A. Chronic early life stress alters developmental and adult neurogenesis and impairs cognitive function in mice. Hippocampus. 2015;25(3):309–28.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Nasca C, Zelli D, Bigio B, Piccinin S, Scaccianoce S, Nisticò R, McEwen BS. Stress dynamically regulates behavior and glutamatergic gene expression in hippocampus by opening a window of epigenetic plasticity. Proc Natl Acad Sci U S A. 2015;112(48):14960–5.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Nestler EJ. Epigenetic mechanisms of depression. JAMA Psychiat. 2014;71(4):454–6.CrossRefGoogle Scholar
  65. Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders. Nat Neurosci. 2010;13(10):1161–9.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Newport DJ, Stowe ZN, Nemeroff CB. Parental depression: animal models of an adverse life event. Am J Psychiatry. 2002;159(8):1265–83.PubMedCrossRefGoogle Scholar
  67. Oomen CA, Soeters H, Audureau N, Vermunt L, van Hasselt FN, Manders EM, Joëls M, Krugers H, Lucassen PJ. Early maternal deprivation affects dentate gyrus structure and emotional learning in adult female rats. Psychopharmacology. 2011;214(1):249–60.PubMedCrossRefGoogle Scholar
  68. Oomen CA, Soeters H, Audureau N, Vermunt L, van Hasselt FN, Manders EM, Joëls M, Lucassen PJ, Krugers H. Severe early life stress hampers spatial learning and neurogenesis, but improves hippocampal synaptic plasticity and emotional learning under high-stress conditions in adulthood. J Neurosci. 2010;30(19):6635–45.PubMedCrossRefGoogle Scholar
  69. Palanza P. Animal models of anxiety and depression: how are females different? Neurosci Biobehav Rev. 2001;25(3):219–33.PubMedCrossRefGoogle Scholar
  70. Parks CL, Robinson PS, Sibille E, Shenk T, Toth M. Increased anxiety of mice lacking the serotonin1A receptor. Proc Natl Acad Sci U S A. 1998;95(18):10734–9.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Pepin MC, Pothier F, Barden N. Impaired type II glucocorticoid-receptor function in mice bearing antisense RNA transgene. Nature. 1992;355(6362):725–8.PubMedCrossRefGoogle Scholar
  72. Peters SM, Pothuizen HH, Spruijt BM. Ethological concepts enhance the translational value of animal models. Eur J Pharmacol. 2015;759:42–50.PubMedCrossRefGoogle Scholar
  73. Porsolt RD, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther. 1977a;229(2):327–36.PubMedGoogle Scholar
  74. Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977b;266(5604):730–2.PubMedCrossRefGoogle Scholar
  75. Proulx CD, Hikosaka O, Malinow R. Reward processing by the lateral habenula in normal and depressive behaviors. Nat Neurosci. 2014;17(9):1146–52.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Pryce CR, Fuchs E. Chronic psychosocial stressors in adulthood: studies in mice, rats and tree shrews. Neurobiol Stress. 2016;6:94–103.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Pryce CR, Ruedi-Bettschen D, Dettling AC, Weston A, Russig H, Ferger B, Feldon J. Long-term effects of early-life environmental manipulations in rodents and primates: potential animal models in depression research. Neurosci Biobehav Rev. 2005;29(4–5):649–74.PubMedCrossRefGoogle Scholar
  78. Ramachandraih CT, Subramanyam N, Bar KJ, Baker G, Yeragani VK. Antidepressants: from MAOIs to SSRIs and more. Indian J Psychiatry. 2011;53(2):180–2.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Ramboz S, Oosting R, Amara DA, Kung HF, Blier P, Mendelsohn M, Mann JJ, Brunner D, Hen R. Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc Natl Acad Sci U S A. 1998;95(24):14476–81.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Reber SO, Slattery DA. Editorial: using stress-based animal models to understand the mechanisms underlying psychiatric and somatic disorders. Front Psych. 2016;7:192.Google Scholar
  81. Refojo D, Schweizer M, Kuehne C, Ehrenberg S, Thoeringer C, Vogl AM, Dedic N, Schumacher M, von Wolff G, Avrabos C, Touma C, Engblom D, Schütz G, Nave KA, Eder M, Wotjak CT, Sillaber I, Holsboer F, Wurst W, Deussing JM. Glutamatergic and dopaminergic neurons mediate anxiogenic and anxiolytic effects of CRHR1. Science. 2011;333(6051):1903–7.PubMedCrossRefGoogle Scholar
  82. Rice CJ, Sandman CA, Lenjavi MR, Baram TZ. A novel mouse model for acute and long-lasting consequences of early life stress. Endocrinology. 2008;149(10):4892–900.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Rupniak NM. Animal models of depression: challenges from a drug development perspective. Behav Pharmacol. 2003;14(5–6):385–90.PubMedGoogle Scholar
  84. Schmidt MV, Wang XD, Meijer OC. Early life stress paradigms in rodents: potential animal models of depression? Psychopharmacology. 2011;214(1):131–40.PubMedCrossRefGoogle Scholar
  85. Selye H. A syndrome produced by diverse nocuous agents. Nature. 1936;138:32.CrossRefGoogle Scholar
  86. Slattery DA, Cryan JF. The ups and downs of modelling mood disorders in rodents. ILAR J. 2014;55(2):297–309.PubMedCrossRefGoogle Scholar
  87. Steinberg E, Christoffel DJ, Deissenroth K, Malenka RC. Illuminating circuitry relevant to psychiatric disorders with optogenetics. Curr Opin Neurobiol. 2015;30:9–16.PubMedCrossRefGoogle Scholar
  88. Sun H, Kennedy PJ, Nestler EJ. Epigenetics of the depressed brain: role of histone acetylation and methylation. Neuropsychopharmacology. 2013;38(1):124–37.CrossRefPubMedGoogle Scholar
  89. Timpl P, Spanagel R, Sillaber I, Kresse A, Reul JM, Stalla GK, Blanquet V, Steckler T, Holsboer F, Wurst W. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat Genet. 1998;19(2):162–6.PubMedCrossRefGoogle Scholar
  90. Tsankova N, Renthal W, Kumar A, Nestler EJ. Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci. 2007;8(5):355–67.PubMedCrossRefGoogle Scholar
  91. Tye KM, Mirzabekov JJ, Warden MR, Ferenczi EA, Tsai HC, Finkelstein J, Kim SY, Adhikari A, Thompson KR, Andalman AS, Gunaydin LA, Witten IB, Deisseroth K. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature. 2013;493(7433):537–41.PubMedCrossRefGoogle Scholar
  92. Weininger O. Mortality of albino rats under stress as a function of early handling. Can J Psychol. 1953;7(3):111–4.PubMedCrossRefGoogle Scholar
  93. WHO Report by the Secretariat. Global burden of mental disorders and the need for a comprehensive, coordinated response from health and social sectors at the country level. Executive board EB 130/9; 2011 (130th session, Provisional agenda item 6.2). 2011.Google Scholar
  94. Wiborg O. Chronic mild stress for modeling anhedonia. Cell Tissue Res. 2013;354(1):155–69.PubMedCrossRefGoogle Scholar
  95. Willner P. The validity of animal models of depression. Psychopharmacology. 1984;83(1):1–16.PubMedCrossRefGoogle Scholar
  96. Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology. 1997;134(4):319–29.PubMedCrossRefGoogle Scholar
  97. Willner P. Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology. 2005;52(2):90–110.PubMedCrossRefGoogle Scholar
  98. Willner P. The chronic mild stress (CMS) model of depression: history, evaluation and usage. Neurobiol Stress. 2016a;6:78–93.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Willner P. Reliability of the chronic mild stress model of depression: a user survey. Neurobiol Stress. 2016b;6:68–77.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Willner P, Belzung C. Treatment-resistant depression: are animal models of depression fit for purpose? Psychopharmacology. 2015;232(19):3473–95.PubMedCrossRefGoogle Scholar
  101. Willner P, Mitchell PJ. The validity of animal models of predisposition to depression. Behav Pharmacol. 2002;13(3):169–88.PubMedCrossRefGoogle Scholar
  102. Xu F, Gainetdinov RR, Wetsel WC, Jones SR, Bohn LM, Miller GW, Wang YM, Caron MG. Mice lacking the norepinephrine transporter are supersensitive to psychostimulants. Nat Neurosci. 2000;3(5):465–71.PubMedCrossRefGoogle Scholar
  103. Yin X, Guven N, Dietis N. Stress-based animal models of depression: do we actually know what we are doing? Brain Res. 2016;1652:30–42.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.MTA – PTE, Neurobiology of Stress Research Group, Szentágothai Research CenterPécsHungary
  2. 2.Institute of Laboratory Medicine, University of Pécs, Medical SchoolPécsHungary
  3. 3.Department of Clinical MedicineAarhus UniversityAarhusDenmark
  4. 4.German Primate Center, Leibniz Institute for Primate ResearchGöttingenGermany

Personalised recommendations