Advertisement

Gut-Microbiota-Brain Axis and Depression

  • Alper Evrensel
  • Mehmet Emin Ceylan
Chapter

Abstract

Contrary to the general belief, a fetus is not sterile. Gut microbiota becomes colonized to the fetus in the intrauterine period. Microorganisms play a very significant role in the development of the immune system and the brain of the fetus. There is a bidirectional symbiotic relationship between gut microbiota and the body. This interaction is determinant on human health. Gut microbiota has fundamental effects on neurodevelopmental processes such as blood-brain barrier formation, myelination, and neurogenesis. There is a relationship between dysbiosis of microbiota and neuropsychological disorders, particularly depression. Colonization of pathogen bacteria in the gut and their metabolites (endotoxins) leads to immune response. Microorganisms affect the brain via the immune system, neuroendocrine system, and nervus vagus. Nutrition, stress, and medication lead to dysbiosis by changing the microbiota composition. It is also possible to purposefully manipulate the gut microbiota. Dysbiosis may be restored by changing gut bacteria composition with probiotics and fecal microbiota transplantation (FMT). Probiotic bacteria have a potential to be used in depression treatment. FMT may be a sign of hope in treatment-resistant depression in the future. The door to the mysterious world of gut-brain relationship seems to have just been opened.

Keywords

Depression Gut-brain axis Microbiota Probiotics Fecal microbiota transplantation 

References

  1. Ait-Belgnaoui A, Durand H, Cartier C, Chaumaz G, Eutamene H, Ferrier L, Houdeau E, Fioramonti J, Bueno L, Theodorou V. Prevention of gut leakiness by intestinal microbiota modulation leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology. 2012;37(11):1885–95.PubMedCrossRefGoogle Scholar
  2. Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H, Zhong H, Khan MT, Zhang J, Li J, Xiao L, Al-Aama J, Zhang D, Lee YS, Kotowska D, Colding C, Tremaroli V, Yin Y, Bergman S, Xu X, Madsen L, Kristiansen K, Dahlgren J, Wang J. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17(5):690–703.PubMedCrossRefGoogle Scholar
  3. Bähr KH. Observations of the behavior of gnotobiotic piglets. Dtsch Tierarztl Wochenschr. 1970;77(6):138–40.PubMedGoogle Scholar
  4. Bailey MT, Coe CL. Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev Psychobiol. 1999;35(2):146–55.PubMedCrossRefGoogle Scholar
  5. Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun. 2011;25(3):397–407.PubMedCrossRefGoogle Scholar
  6. Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol. 2012;113(2):411–7.PubMedCrossRefGoogle Scholar
  7. Begec Z, Yucel A, Yakupogullari Y, Erdogan MA, Duman Y, Durmus M, Ersoy MO. The antimicrobial effects of ketamine combined with propofol: an in vitro study. Braz J Anesthesiol. 2013;63(6):461–5.PubMedCrossRefGoogle Scholar
  8. Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, Deng Y, Blennerhassett P, Macri J, McCoy KD, Verdu EF, Collins SM. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141(2):599–609.PubMedCrossRefGoogle Scholar
  9. Berer K, Mues M, Koutrolos M, Rasbi ZA, Boziki M, Johner C, Wekerle H, Krishnamoorthy G. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011;479(7374):538–41.PubMedCrossRefGoogle Scholar
  10. Berk M, Williams LJ, Jacka FN, O’Neil A, Pasco JA, Moylan S, Allen NB, Stuart AL, Hayley AC, Byrne ML, Maes M. So depression is an inflammatory disease, but where does the inflammation come from? BMC Med. 2013;11:200.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bitonti AJ, Sjoerdsma A, McCann PP, Kyle DE, Oduola AM, Rossan RN, Milhous WK, Davidson DE Jr. Reversal of chloroquine resistance in malaria parasite Plasmodium falciparum by desipramine. Science. 1988;242(4883):1301–3.PubMedCrossRefGoogle Scholar
  12. Bohnert JA, Szymaniak-Vits M, Schuster S, Kern WV. Efflux inhibition by selective serotonin reuptake inhibitors in Escherichia coli. J Antimicrob Chemother. 2011;66(9):2057–60.PubMedCrossRefGoogle Scholar
  13. Bollrath J, Powrie F. Immunology. Feed your Tregs more fiber. Science. 2013;341(6145):463–4.PubMedCrossRefGoogle Scholar
  14. Borre YE, O’Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF. Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med. 2014;20(9):509–18.PubMedCrossRefGoogle Scholar
  15. Bowden TA Jr, Mansberger AR Jr, Lykins LE. Pseudomembraneous enterocolitis: mechanism for restoring floral homeostasis. Am Surg. 1981;47(4):178–83.PubMedGoogle Scholar
  16. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108(38):16050–5.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Carvalho FA, Aitken JD, Vijay-Kumar M, Gewirtz AT. Toll-like receptor-gut microbiota interactions: perturb at your own risk! Annu Rev Physiol. 2012;74:177–98.PubMedCrossRefGoogle Scholar
  18. Cepeda MS, Katz EG, Blacketer C. Microbiome-gut-brain axis: probiotics and their association with depression. J Neuropsychiatry Clin Neurosci. 2017;29(1):39–44.PubMedCrossRefGoogle Scholar
  19. Chessin M, Kramer ER, Scott CC. Modifications of the pharmacology of reserpine and serotonin by iproniazid. J Pharmacol Exp Ther. 1957;119(4):453–60.PubMedGoogle Scholar
  20. Coban AY, Tanriverdi Cayci Y, Keleş Uludağ S, Durupinar B. Investigation of antibacterial activity of sertralin. Mikrobiyol Bul. 2009;43(4):651–6.PubMedGoogle Scholar
  21. Collins SM, Bercik P. The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology. 2009;136(6):2003–14.PubMedCrossRefGoogle Scholar
  22. Costello EK, Stagaman K, Dethlefsen L, Bohannan J, Relman DA. The application of ecological theory toward an understanding of the human microbiome. Science. 2012;336(6086):1255–62.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701–12.PubMedCrossRefGoogle Scholar
  24. Csiszar K, Molnar J. Mechanism of action of tricyclic drugs on Escherichia coli and Yersinia enterocolitica plasmid maintenance and replication. Anticancer Res. 1992;12(6B):2267–72.PubMedGoogle Scholar
  25. Dash S, Clarke G, Berk M, Jacka FN. The gut microbiome and diet in psychiatry: focus on depression. Curr Opin Psychiatry. 2015;28(1):1–6.PubMedCrossRefGoogle Scholar
  26. Davey KJ, O’Mahony SM, Schellekens H, O’Sullivan O, Bienenstock J, Cotter PD, Dinan TG, Cryan JF. Olanzapine induced weight gain in the rat: impact on inflammatory, metabolic and microbiota parameters. Psychopharmacology. 2013;221(1):155–69.CrossRefGoogle Scholar
  27. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.PubMedCrossRefGoogle Scholar
  28. Desbonnet L, Clarke G, Traplin A, O’Sullivan O, Crispie F, Moloney RD, Cotter PD, Dinan TG, Cryan JF. Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav Immun. 2015;48:165–73.PubMedCrossRefGoogle Scholar
  29. Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG. The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res. 2008;43(2):164–74.PubMedCrossRefGoogle Scholar
  30. Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience. 2010;170(4):1179–88.PubMedCrossRefGoogle Scholar
  31. Diaz Heijtz R, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A. 2011;108(7):3047–52.PubMedCrossRefGoogle Scholar
  32. Dinan TG, Quigley EM. Probiotics in the treatment of depression: science or science fiction? Aust N Z J Psychiatry. 2011;45(12):1023–5.PubMedCrossRefGoogle Scholar
  33. Dinan TG, Stanton C, Cryan JF. Psychobiotics: a novel class of psychotropic. Biol Psychiatry. 2013;74(10):720–6.PubMedCrossRefGoogle Scholar
  34. Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, Cox LM, Amir A, Gonzalez A, Bokulich NA, Song SJ, Hoashi M, Rivera-Vinas JI, Mendez K, Knight R, Clemente JC. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med. 2016;22(3):250–3.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Douglas-Escobar M, Elliott E, Neu J. Effect of intestinal microbial ecology on the developing brain. JAMA Pediatr. 2013;167(4):374–9.PubMedCrossRefGoogle Scholar
  36. Eiseman B, Silen W, Bascom GS, Kauvar AJ. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery. 1958;44(5):854–9.PubMedGoogle Scholar
  37. Evrensel A, Ceylan ME. The gut-brain axis: the missing link in depression. Clin Psychopharmacol Neurosci. 2015a;13(3):239–44.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Evrensel A, Ceylan ME. The role of fecal microbiota transplantation in psychiatric treatment. Anadolu Psikiyatri Derg. 2015b;16(5):380.Google Scholar
  39. Evrensel A, Ceylan ME. Fecal microbiota transplantation and its usage in neuropsychiatric disorders. Clin Psychopharmacol Neurosci. 2016a;14(3):231–7.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Evrensel A, Ceylan ME. The future of fecal microbiota transplantation method in neuropsychiatric disorders. Turk Psikiyatri Derg. 2016b;27(1):71–2.PubMedGoogle Scholar
  41. Evrensel A, Ceylan ME. Microbiome: the missing link in neuropsychiatric disorders. EMJ Innov. 2017;1(1):83–8.Google Scholar
  42. Fetissov SO, Déchelotte P. The new link between gut–brain axis and neuropsychiatric disorders. Curr Opin Clin Nutr Metab Care. 2011;14(5):477–82.PubMedCrossRefGoogle Scholar
  43. Fond G, Boukouaci W, Chevalier G, Regnault A, Eberl G, Hamdani N, Dickerson F, Macgregor A, Boyer L, Dargel A, Oliveira J, Tamouza R, Leboyer M. The “psychomicrobiotic”: targeting microbiota in major psychiatric disorders: a systematic review. Pathol Biol (Paris). 2014;63(1):35–42.CrossRefGoogle Scholar
  44. Forsythe P, Kunze WA. Voices from within: gut microbes and the CNS. Cell Mol Life Sci. 2013;70(1):55–69.PubMedCrossRefGoogle Scholar
  45. Gárate I, García-Bueno B, Madrigal JL, Bravo L, Berrocoso E, Caso JR, Micó JA, Leza JC. Origin and consequences of brain toll-like receptor 4 pathway stimulation in an experimental model of depression. J Neuroinflamm. 2011;8:151.CrossRefGoogle Scholar
  46. Gocmen S, Buyukkocak U, Caglayan O. In vitro investigation of the antibacterial effect of ketamine. Ups J Med Sci. 2008;113(1):39–46.PubMedCrossRefGoogle Scholar
  47. Hamdani N, Boukouaci W, Hallouche MR, Charron D, Krishnamoorthy R, Leboyer M, Tamouza R. Resolution of a manic episode treated with activated charcoal: evidence for a brain-gut axis in bipolar disorder. Aust N Z J Psychiatry. 2015;49(12):1221–3.PubMedCrossRefGoogle Scholar
  48. Hamilton MJ, Weingarden AR, Sadowsky MJ, Khoruts A. Standardized frozen preparation for transplantation of fecal microbiota for recurrent Clostridium difficile infection. Am J Gastroenterol. 2012;107(5):761–7.PubMedCrossRefGoogle Scholar
  49. Helander HF, Fändriks L. Surface area of the digestive tract – revisited. Scand J Gastroenterol. 2014;49(6):681–9.PubMedCrossRefGoogle Scholar
  50. Hornig M. The role of microbes and autoimmunity in the pathogenesis of neuropsychiatric illness. Curr Opin Rheumatol. 2013;25(4):488–95.PubMedCrossRefGoogle Scholar
  51. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chow J, Reisman SE, Petrosino JF, Patterson PH, Mazmanian SK. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–63.PubMedPubMedCentralCrossRefGoogle Scholar
  52. James W. What is an emotion? Mind. 1884;9(34):188–205.CrossRefGoogle Scholar
  53. Jeon SW, Kim YK. Neuroinflammation and cytokine abnormality in major depression: cause or consequence in that illness? World J Psychiatry. 2016;6(3):283–93.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, Wang W, Tang W, Tan Z, Shi J, Li L, Ruan B. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun. 2015;48:186–94.PubMedCrossRefGoogle Scholar
  55. Johnston JP. Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol. 1968;17(7):1285–97.PubMedCrossRefGoogle Scholar
  56. Kang DW, Adams JB, Gregory AC, Borody T, Chittick L, Fasano A, Khoruts A, Geis E, Maldonado J, McDonough-Means S, Pollard EL, Roux S, Sadowsky MJ, Lipson KS, Sullivan MB, Caporaso JG, Krajmalnik-Brown R. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome. 2017;5(1):10.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kelly JR, Borre Y, O’Brien C, Patterson E, El Aidy S, Deane J, Kennedy PJ, Beers S, Scott K, Moloney G, Hoban AE, Scott L, Fitzgerald P, Ross P, Stanton C, Clarke G, Cryan JF, Dinan TG. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res. 2016;82:109–18.PubMedCrossRefGoogle Scholar
  58. Khanna S, Tosh PK. A clinican’s primer on the role of the microbiome in human health and disease. Mayo Clin Proc. 2014;89(1):107–14.PubMedCrossRefGoogle Scholar
  59. Kim YK, Na KS, Myint AM, Leonard BE. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;64:277–84.CrossRefGoogle Scholar
  60. Kopp MV, Goldstein M, Dietschek A, Sofke J, Heinzmann A, Urbanek R. Lactobacillus GG has in vitro effects on enhanced interleukin-10 and interferon-gamma release of mononuclear cells but no in vivo effects in supplemented mothers and their neonates. Clin Exp Allergy. 2008;38(4):602–10.PubMedCrossRefGoogle Scholar
  61. Levkovich T, Poutahidis T, Smillie C, Varian BJ, Ibrahim YM, Lakritz JR, Alm EJ, Erdman SE. Probiotic bacteria induce a ‘glow of health’. PLoS One. 2013;8(1):e53867.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Liao YT, Hsieh MH, Yang YH, Wang YC, Tsai CS, Chen VC, Gossop M. Association between depression and enterovirus infection: a nationwide population-based cohort study. Medicine (Baltimore). 2017;96(5):e5983.CrossRefGoogle Scholar
  63. López-Muñoz F, Alamo C. Monoaminergic neurotransmission: the history of the discovery of antidepressants from 1950s until today. Curr Pharm Des. 2009;15(14):1563–86.PubMedCrossRefGoogle Scholar
  64. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220–30.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lucas K, Maes M. Role of the toll like receptor (TLR) radical cyclein chronic inflammation: possible treatments targeting the TLR4 pathway. Mol Neurobiol. 2013;48(1):190–204.PubMedCrossRefGoogle Scholar
  66. Lyte M. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. BioEssays. 2011;33(8):574–81.PubMedCrossRefGoogle Scholar
  67. Macedo D, Filho AJ, Soares de Sousa CN, Quevedo J, Barichello T, Júnior HV, Freitas de Lucena D. Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness. J Affect Disord. 2017;208:22–32.PubMedCrossRefGoogle Scholar
  68. Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc. 2003;62(1):67–72.PubMedCrossRefGoogle Scholar
  69. Mackowiak PA. Recycling Metchnikoff: probiotics, the intestinal microbiome and the quest for long life. Front Public Health. 2013;1:52.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Maes M, Kenis G, Kubera M, De Baets M, Steinbusch H, Bosmans E. The negative immunoregulatory effects of fluoxetine in relation to the cAMP-dependent PKA pathway. Int Immunopharmacol. 2005;5(3):609–18.PubMedCrossRefGoogle Scholar
  71. Maes M, Kubera M, Leunis JC, Berk M. Increased IgA and IgM responses against gut commensals in chronic depression: further evidence for increased bacterial translocation or leaky gut. J Affect Disord. 2012;141(1):55–62.PubMedCrossRefGoogle Scholar
  72. Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol H, Doré J, Corthier G, Furet JP. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:123.PubMedPubMedCentralCrossRefGoogle Scholar
  73. McCusker RH, Kelley KW. Immune-neural connections: how the immune system’s response to infectious agents influences behavior. J Exp Biol. 2013;216(Pt 1):84–98.PubMedPubMedCentralCrossRefGoogle Scholar
  74. McKernan DP, Dennison U, Gaszner G, Cryan JF, Dinan TG. Enhanced peripheral toll-like receptor responses in psychosis: further evidence of a pro-inflammatory phenotype. Transl Psychiatry. 2011;1:e36.PubMedPubMedCentralCrossRefGoogle Scholar
  75. McNutt MD, Liu S, Manatunga A, Royster EB, Raison CL, Woolwine BJ, Demetrashvili MF, Miller AH, Musselman DL. Neurobehavioral effects of interferon-α in patients with hepatitis-C: symptom dimensions and responsiveness to paroxetine. Neuropsychopharmacology. 2012;37(6):1444–54.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, Bisson JF, Rougeot C, Pichelin M, Cazaubiel M, Cazaubiel JM. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr. 2011;105(5):755–64.PubMedCrossRefGoogle Scholar
  77. Messaoudi M, Violle N, Bisson JF, Desor D, Javelot H, Rougeot C. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes. 2011;2(4):256–61.PubMedCrossRefGoogle Scholar
  78. Munoz-Bellido JL, Munoz-Criado S, Garcı̀a-Rodrı̀guez JA. Antimicrobial activity of psychotropic drugs. Int J Antimicrob Agents. 2000;14(3):177–80.PubMedCrossRefGoogle Scholar
  79. Naseribafrouei A, Hestad K, Avershina E, Sekelja M, Linløkken A, Wilson R, Rudi K. Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil. 2014;26(8):1155–62.PubMedCrossRefGoogle Scholar
  80. Neish AS. Microbes in gastrointestinal health and disease. Gastroenterology. 2009;136(1):65–80.PubMedCrossRefGoogle Scholar
  81. Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil. 2011;23(3):255–64.PubMedCrossRefGoogle Scholar
  82. NIH HMP Working Group, Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, McEwen JE, Wetterstrand KA, Deal C, Baker CC, Di Francesco V, Howcroft TK, Karp RW, Lunsford RD, Wellington CR, Belachew T, Wright M, Giblin C, David H, Mills M, Salomon R, Mullins C, Akolkar B, Begg L, Davis C, Grandison L, Humble M, Khalsa J, Little AR, Peavy H, Pontzer C, Portnoy M, Sayre MH, Starke-Reed P, Zakhari S, Read J, Watson B, Guyer M. The NIH human microbiome project. Genome Res. 2009;19(12):2317–23.CrossRefGoogle Scholar
  83. O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. 2015;277:32–48.PubMedCrossRefGoogle Scholar
  84. O’Mahony SM, Marchesi JR, Scully P, Codling C, Ceolho AM, Quigley EM, Cryan JF, Dinan TG. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry. 2009;65(3):263–7.PubMedCrossRefGoogle Scholar
  85. Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, Glickman JN, Siebert R, Baron RM, Kasper DL, Blumberg RS. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012;336(6080):489–93.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Phillips JGP. The treatment of melancholia by the lactic acid bacillus. J Ment Sci. 1910;56(234):422–31.CrossRefGoogle Scholar
  87. Pirbaglou M, Katz J, de Souza RJ, Stearns JC, Motamed M, Ritvo P. Probiotic supplementation can positively affect anxiety and depressive symptoms: a systematic review of randomized controlled trials. Nutr Res. 2016;36(9):889–98.PubMedCrossRefGoogle Scholar
  88. Romijn AR, Rucklidge JJ, Kuijer RG, Frampton C. A double-blind, randomized, placebo-controlled trial of Lactobacillus helveticus and Bifidobacterium longum for the symptoms of depression. Aust N Z J Psychiatry. 2017;51(8):810–21.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Rook GA. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: darwinian medicine and the ‘hygiene’ or ‘old friends’ hypothesis. Clin Exp Immunol. 2010;160(1):70–9.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Rook GA, Lowry CA, Raison CL. Hygiene and early childhood influences on the subsequent function of the immune system. Brain Res. 2015;1617:47–62.PubMedCrossRefGoogle Scholar
  91. Round JL, O’Connell RM, Mazmanian SK. Coordination of tolerogenic immune responses by the commensal microbiota. J Autoimmun. 2010;34(3):J220–5.PubMedCrossRefGoogle Scholar
  92. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. The central nervous system and the gut microbiome. Cell. 2016;167(4):915–32.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Slykerman RF, Thompson J, Waldie KE, Murphy R, Wall C, Mitchell EA. Antibiotics in the first year of life and subsequent neurocognitive outcomes. Acta Paediatr. 2017;106(1):87–94.PubMedCrossRefGoogle Scholar
  95. Smythies LE, Smythies JR. Microbiota, the immune system, black moods and the brain melancholia updated. Front Hum Neurosci. 2014;8:720.Google Scholar
  96. Song Y, Könönen E, Rautio M, Liu C, Bryk A, Eerola E, Finegold SM. Alistipes onderdonkii sp. nov. and Alistipes shahii sp. nov., of human origin. Int J Syst Evol Microbiol. 2006;56(Pt 8):1985–90.PubMedCrossRefGoogle Scholar
  97. Stilling RM, Dinan TG, Cryan JF. Microbial genes, brain & behaviour – epigenetic regulation of the gut-brain axis. Genes Brain Behav. 2014;13(1):69–86.PubMedCrossRefGoogle Scholar
  98. Strachan DP. Hay fever, hygiene, and household size. BMJ. 1989;299(6710):1259–60.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, Kubo C, Koga Y. Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J Physiol. 2004;558(Pt 1):263–75.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–20.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Udina M, Castellví P, Moreno-España J, Navinés R, Valdés M, Forns X, Langohr K, Solà R, Vieta E, Martín-Santos R. Interferon-induced depression in chronic hepatitis C: a systematic review and meta-analysis. J Clin Psychiatry. 2012;73(2):1128–38.PubMedCrossRefGoogle Scholar
  102. Weinbach EC, Levenbook L, Alling DW. Binding of tricyclic antidepressant drugs to trophozoites of Giardia lamblia. Comp Biochem Physiol C. 1992;102(3):391–6.PubMedCrossRefGoogle Scholar
  103. Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci. 1977;74(11):5088–90.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Xu MQ, Cao HL, Wang WQ, Wang S, Cao XC, Yan F, Wang BM. Fecal microbiota transplantation broadening its application beyond intestinal disorders. World J Gastroenterol. 2015;21(1):102–11.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Youngster I, Russell GH, Pindar C, Ziv-Baran T, Sauk J, Hohmann EL. Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. JAMA. 2014;312(17):1772–8.PubMedCrossRefGoogle Scholar
  106. Zhang F, Luo W, Shi Y, Fan Z, Ji G. Should we standardize the 1,700-year-old fecal microbiota transplantation? Am J Gastroenterol. 2012;107(11):1755.PubMedCrossRefGoogle Scholar
  107. Zhu B, Wang X, Li L. Human gut microbiome: the second genome of human body. Protein Cell. 2010;1(8):718–25.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Zilberstein D, Dwyer DM. Antidepressants cause lethal disruption of membrane function in the human protozoan parasite Leishmania. Science. 1984;226(4677):977–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of PsychiatryUskudar UniversityIstanbulTurkey

Personalised recommendations