DTI Image Denoising Based on Complex Shearlet Domain and Complex Diffusion Anisotropic Filtering

  • Shuaiqi LiuEmail author
  • Pengfei Li
  • Ming Liu
  • Qi Hu
  • Mingzhu Shi
  • Jie Zhao
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 463)


Diffusion tensor imaging (DTI) is an imaging modality that has developed in recent years. It is a non-invasive technique and needn’t contrast medium. However, the SNR of DTI data is relatively low and clinically polluted by noise, which can bring serious impacts on tensor calculating, fiber tracking and other post-processing. In order to reduce the influence of noise on DTI images and improve the efficiency of diffusion tensor imaging effectively, a new DTI denoising scheme is proposed by combining the complex Shearlet transform and complex diffusion anisotropic filtering. The experiment results acquired from the simulated and real data prove the good performance of the presented algorithm.


Diffusion tensor imaging Complex shearlet transform Complex diffusion anisotropic filtering 



This work was supported by Natural Science Foundation of China under grant 61401308 and 61572063, Natural Science Foundation of Hebei Province under grant F2016201142 and F2016201187, Science research project of Hebei Province under grant QN2016085 and ZC2016040, Natural Science Foundation of Hebei University under grant 2014-303, Post-graduate’s Innovation Fund Project of Hebei University under grant X201710.


  1. 1.
    Nowak, R.D.: Wavelet-based Rician noise removal for magnetic resonance imaging. IEEE Trans. Image Process. 8(10), 1408–1419 (1999)Google Scholar
  2. 2.
    Saurav, B., Thomas, F., Ross, W.: Rician noise removal in diffusion tensor MRI. In: MICCAI 2006, pp. 117–125. Springer (2006)Google Scholar
  3. 3.
    Xu, Q., Anderson, A.W., Gore, J.C., Ding, Z.H.: Diffusion tensor image smoothing using efficient and effective anisotropic filtering. In: IEEE International Conference on Computer Vision, pp. 134–145. IEEE Press (2007)Google Scholar
  4. 4.
    Zhang, X.F., Zhang, H.M., Tian, W.F.: Restoring DTI images based on complex diffusion process and fiber tracking. Jisuanji Yingyong Yu Ruanjian 26(6), 13–14 (2009)Google Scholar
  5. 5.
    Liu, F., Ruan, X.E.: Wavelet-based diffusion approaches for signal denoising. Sig. Process. 87(5), 1138–1146 (2007)Google Scholar
  6. 6.
    Chan, T.F., Zhou, H.M.: Total variation wavelet thresholding. J. Sci. Comput. 32(2), 315–341 (2007)Google Scholar
  7. 7.
    Do, M.N., Vetterli, M.: Contourlets: a directional multiresolution image representation. In: IEEE International Conference on Image Processing, pp. 357–360. IEEE Press (2002)Google Scholar
  8. 8.
    Guo, K.H., Labate, D.: Optimally sparse multidimensional representation using shearlets. SIAM J. Math. Anal. 39(1), 298–318 (2007)Google Scholar
  9. 9.
    Liu, S.Q., Hu, S.H., Xiao, Y.: Image separation using wavelet-complex shearlet dictionary. J. Syst. Eng. Electron. 25(2), 314–321 (2014)Google Scholar
  10. 10.
    Zhang, X., Lu, B.L., Ma, Y., et al.: Denoising diffusion tensor images with shearlet. In: International Conference on Signal Processing, pp. 962–965. IEEE Press (2012)Google Scholar
  11. 11.
    Zhang, X., Liu, X., Ma, Y.: A new DTI image denoising method based on shearlet shrinkage and complex diffusion. In: International Congress on Image and Signal Processing, pp. 229–233. IEEE Press (2014)Google Scholar
  12. 12.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)Google Scholar
  13. 13.
    Gilboa, G., Sochen, N., Zeevi, Y.Y.: Forward-and-backward diffusion processes for adaptive image enhancement and denoising. IEEE Trans. Image Process. 11, 689–703 (2002)Google Scholar
  14. 14.
    Kai, K., Menzel, M.I., Scharr, H.: A Riemannian Bayesian framework for estimating diffusion tensor images. Int. J. Comput. Vis. 120, 1–28 (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shuaiqi Liu
    • 1
    • 2
    Email author
  • Pengfei Li
    • 1
    • 2
  • Ming Liu
    • 3
  • Qi Hu
    • 1
    • 2
  • Mingzhu Shi
    • 4
  • Jie Zhao
    • 1
    • 2
  1. 1.College of Electronic and Information EngineeringHebei UniversityBaodingChina
  2. 2.Key Laboratory of Digital Medical Engineering of Hebei ProvinceBaodingChina
  3. 3.Department of PersonnelHebei UniversityBaodingChina
  4. 4.College of Electronic and Communication EngineeringTianjin Normal UniversityTianjinChina

Personalised recommendations