Advertisement

The Method of Compressed Sensing for TWTA Linearization

  • Xin Hu
  • Yinghui Zhang
  • Shuaijun Liu
  • Weidong Wang
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 463)

Abstract

To reckon with the high feedback sampling rate of a digital predistortion linearizer for TWTA (Travelling Wave Tube Amplifier), a novel method with compressed sensing is presented in this paper. The Simulation results show that good linearity improvement can be attained for an X-band TWTA with low feedback sampling rate.

Keywords

Low sampling frequency Compressed sensing Nonlinear distortion Digital predistortion linearizer 

References

  1. 1.
    Gray, R., Kats, A., Dorval, R.: Advances in millimeter-wave linearization. In: Proceedings of 13th Ka Broadband Communication Conference, Torino, Italy, pp. 76–79 (2007)Google Scholar
  2. 2.
    Xin, H., Gang, W., Zicheng, W., Jirun, L.: Research and application of combining LUT and memory compensation for TWTA linearization. Prog. Electromagnet. Res. C 29(2), 177–190 (2012)Google Scholar
  3. 3.
    Tang, Y., Quan, X., Shao, S., et al.: Digital predistortion architecture with reduced ADC dynamic range. Electron. Lett. 2(1), 20–22 (2012)Google Scholar
  4. 4.
    Abdussalam, N.B.: Performance evaluation of APK modulation for nonlinear satellite communication channel. In: 2009 Second International Conference on Computer and Electrical Engineering, Dubai, United Arab Emirates, pp. 524–528 (2009)Google Scholar
  5. 5.
    Qin, C., Chang, T., Liu, L.-T.: A modified adaptive pre-distorter for power amplifier in OFDM system. In: 2010 International Conference on Communications and Mobile Computing, Shenzhen, China, pp. 393–397 (2010)Google Scholar
  6. 6.
    Ding, L., Zhou, G.T., Morgan, D.R., et al.: A robust digital baseband predistorter constructed usingmemory polynomials. IEEE Trans. Commun. 52(3), 159–164 (2014)Google Scholar
  7. 7.
    Beikmirza, M., Mirzavand, R., Mohammadi, A.: Power amplifier linearization using digital predistortion and multi-port techniques. IET Sci. Meas. Technol. 21(3), 131–136 (2016)Google Scholar
  8. 8.
    Mengali, A., Mysore, R.B.S., Ottersten, B.: Joint predistortion and PAPR reduction in multibeam satellite systems. In: IEEE International Conference on Communications, Kuala Lumpur, Malaysia, pp. 255–261 (2016)Google Scholar
  9. 9.
    Piazza, R., Mysore, R.B.S., Ottersten, B.: Multi-gateway data predistortion for non-linear satellite channels. IEEE Trans. Commun. 63(10), 1–2 (2015)Google Scholar
  10. 10.
    Kim, J., Konstantinou, K.: Digital predistortion of wideband signals based on power amplifier model with memory. Electron. Lett. 37(23), 1417–1418 (2012)Google Scholar
  11. 11.
    Helaoui, M., Boumaiza, S., Ghazel, A.: Power and efficiency enhancement of 3G multicarrier amplifiers using digital signal processing with experiment validation. IEEE Trans. Microw. Theor. Tech. 54(4), 1396–1404 (2013)Google Scholar
  12. 12.
    Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theor. 52(4), 1289–1306 (2006)Google Scholar
  13. 13.
    Zhang, F., Wang, Y., Ai, B.: Variable step-size MLMS algorithm for digital predistortion in wideband OFDM systems. IEEE Trans. Consum. Electron. 61(1), 10–15 (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xin Hu
    • 1
  • Yinghui Zhang
    • 2
  • Shuaijun Liu
    • 1
  • Weidong Wang
    • 1
  1. 1.School of Electronic EngineeringBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.Institute of Spacecraft System Engineering CASTBeijingChina

Personalised recommendations