Advertisement

The Multi-parameter Analysis of the Influence on Internal Wave Imaging by Space-Borne SAR

  • Jintao Cao
  • Yun Zhang
  • Yinsheng Wei
  • Yicheng Jiang
  • Yunyun Meng
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 463)

Abstract

Synthetic aperture radar (SAR) is widely used in remote sensing and surveillance area, including observing internal waves (IWs). In this paper, the basic form of IW is studied in order to find out the affection of radar parameters, which can help improve the precision of IW parameter estimation by SAR sensor. A new method is proposed to analyze the influence of internal waves. Simulations and experiments are drawn, and the result proved the proposed analyzing method efficient for understanding the internal waves and the influence of radar parameters.

Keywords

SAR Internal wave KdV equation 

Notes

Acknowledgement

This work was supported by the National Natural Science Foundation of China 61201304 and 61201308. It also thanks for the Aerospace Innovation Foundation.

References

  1. 1.
    Gan, X., Huang, W., Yang, J., Fu, B.: Internal wave packet characterization from SAR images using empirical mode decomposition (EMD). In: 2008 Congress on Image and Signal Processing, Sanya, China, pp. 750–753 (2008).  https://doi.org/10.1109/cisp.2008.136
  2. 2.
    Rodenas, J.A., Garello, R.: Wavelet analysis in SAR ocean image profiles for internal wave detection and wavelength estimation. IEEE Trans. Geosci. Remote Sens. 35(4), 933–945 (1997).  https://doi.org/10.1109/36.6025356CrossRefGoogle Scholar
  3. 3.
    Zheng, Q., Yuan, Y., Klemas, V., Yan, X.-H.: Theoretical expression for an ocean internal soliton synthetic aperture radar image and determination of the soliton characteristic half width. J. Geophys. Res. 106(C12), 31415–31423 (2001). https://doi.org/10.1029/2000jc000726CrossRefGoogle Scholar
  4. 4.
    Pardini, M., Parrella, G., Fischer, G., Papathanassiou, K.: A multi-frequency SAR tomographic characterization of sub-surface ice volumes. In: Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, pp. 1–6 (2016)Google Scholar
  5. 5.
    Valenzuela, G.R.: Theories for the interaction of electromagnetic and ocean waves-a review. Bound. Layer Meteorol. 13, 61–85 (1978)CrossRefGoogle Scholar
  6. 6.
    Romeiser, R.: Optimization of a composite surface model for the radar backscattering cross section of the ocean surface as measured by wind scatterometers. In: Geoscience and Remote Sensing Symposium, IGARSS 1996, Lincoln, NE, vol. 1, pp. 597–599 (1996).  https://doi.org/10.1109/igarss.1996.51641499
  7. 7.
    Ouyang, Y., Chong, J., Wu, Y., Zhu, M.: Simulation studies of internal waves in SAR images under different SAR and wind field conditions. IEEE Trans. Geosci. Remote Sens. 49(5), 1734–1743 (2011).  https://doi.org/10.1109/TGRS.2010.2087384CrossRefGoogle Scholar
  8. 8.
    Romeiser, R., Thompson, D.R.: Numerical study on the along-track interferometric radar imaging mechanism of oceanic surface currents. IEEE Trans. Geosci. Remote Sens. 38(2), 446–458 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jintao Cao
    • 1
  • Yun Zhang
    • 1
  • Yinsheng Wei
    • 1
  • Yicheng Jiang
    • 1
  • Yunyun Meng
    • 1
  1. 1.Harbin Institute of TechnologyHarbinChina

Personalised recommendations