Advertisement

Constant Envelope OFDM RadCom System

  • Yixuan Huang
  • Qu Luo
  • Shiyong Ma
  • Su Hu
  • Yuan Gao
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 463)

Abstract

A joint radar and communication system would constitute a unique platform for future intelligent transportation networks effecting the essential tasks of environmental sensing and wireless communication. While the inherent high peak-to-average power ratio (PAPR) question of OFDM system cannot be solved. This paper introduces a constant envelope multi-carrier RadCom approach with the advantages of high data rate, high ability of anti-fading, simple radar processing, and constant 0 dB PAPR. Constant envelope OFDM RadCom system is able to solve the high PAPR question perfectly, promote efficiency of power amplifier and resistance to fading.

Keywords

Constant envelope OFDM RadCom 

Notes

Acknowledgement

The work is jointly supported by the MOST Program of International S&T Cooperation (Grant No. 2016YFE0123200), National Natural Science Foundation of China (Grant No. 61471100/61101090/61571082), Science and Technology on Electronic Information Control Laboratory (Grant No. 6142105040103) and Fundamental Research Funds for the Central Universities (Grant No. ZYGX2015J012/ZYGX2014Z005).

References

  1. 1.
    Ahmed, A.U., Thompson, S.C., Zeidler, J.R.: Channel estimation and equalization for CE-OFDM in multipath fading channels. In: IEEE MILCOM, San Diego, CA, USA, pp. 1–7 (2008)Google Scholar
  2. 2.
    Braun, M., Sturm, C., Jondral, F.K.: Maximum likelihood speed and distance estimation for OFDM radar. In: IEEE Radar Conference, pp. 256–261 (2010)Google Scholar
  3. 3.
    Cimini, L.J.: Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing. IEEE Trans. Commun. 33(7), 665–675 (1985)Google Scholar
  4. 4.
    Dardari, D., Tralli, V., Vaccari, A.: A theoretical characterization of nonlinear distortion effects in OFDM systems. IEEE Trans. Commun. 48(10), 1755–1764 (2014)Google Scholar
  5. 5.
    Jia, M., Gu, X., Guo, Q., et al.: Broadband hybrid satellite-terrestrial communication systems based on cognitive radio toward 5G. IEEE Wirel. Commun. 23(6), 96–106 (2017)Google Scholar
  6. 6.
    Jia, M., Wang, X., Gu, X., et al.: A simplified multiband sampling and detection method based on MWC structure for mm wave communications in 5G wireless networks. Int. J. Antennas Propag. 1–10 (2015)Google Scholar
  7. 7.
    Jia, M., Wang, L., Yin, Z., et al.: A novel spread slotted ALOHA based on cognitive radio for satellite communications system. EURASIP J. Wirel. Commun. Netw. 2015, 232 (2016)Google Scholar
  8. 8.
    Sturm, C., Wiesbeck, W.: Waveform design and signal processing aspects for fusion of wireless communications and radar sensing. Proc. IEEE 99(7), 1236–1259 (2011)Google Scholar
  9. 9.
    Sit, Y.L., Sturm, C., Zwick, T., et al.: The OFDM joint radar-communication system: an overview. In: The Third SPACOMM, Budapest, Hungary, pp. 69–74 (2011)Google Scholar
  10. 10.
    Sturm, C., Pancera, E., Zwick, T., et al.: A novel approach to OFDM radar processing. In: IEEE Radar Conference, pp. 1–4 (2009)Google Scholar
  11. 11.
    Sturm, C., Braun, M., Zwick, T., et al.: A multiple target doppler estimation algorithm for OFDM based intelligent radar systems. In: 2010 European Radar Conference, pp. 73–76 (2010)Google Scholar
  12. 12.
    Sturm, C., Zwick, T., Wiesbeck, W., et al.: Performance verification of symbol-based OFDM radar processing. In: IEEE Radar Conference, pp. 60–63 (2010)Google Scholar
  13. 13.
    Thompson, S.C., Ahmed, A.U., Proakis, J.G., et al.: Constant envelope OFDM. IEEE Trans. Commun. 56(8), 1300–1312 (2008)Google Scholar
  14. 14.
    Thompson, S.C., Proakis, J.G., Zeidler, J.R.: Constant envelope OFDM in multipath Rayleigh fading channels. In: IEEE MILCOM, pp. 1–7 (2006)Google Scholar
  15. 15.
    Tsai, Y., Zhang, G., Pan, J.L.: Orthogonal frequency division multiplexing with phase modulation and constant envelope design. In: IEEE MILCOM, pp. 2658–2664 (2005)Google Scholar
  16. 16.
    Tsao, T., Slamani, M., Varshney, P., et al.: Ambiguity function for a bistatic radar. IEEE Trans. Aerosp. Electron. Syst. 33(3), 1041–1051 (1997)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yixuan Huang
    • 1
  • Qu Luo
    • 1
  • Shiyong Ma
    • 1
  • Su Hu
    • 1
  • Yuan Gao
    • 2
    • 3
    • 4
  1. 1.University of Electronic Science and Technology of ChinaChengduChina
  2. 2.Department of Electronic EngineeringTsinghua UniversityBeijingChina
  3. 3.Xichang Satellite Launch CenterXichangChina
  4. 4.China Defense Science and Technology Information CenterBeijingChina

Personalised recommendations