Skip to main content

Heat Transfer and Leakage Analysis for R410A Refrigeration Scroll Compressor

  • Conference paper
  • First Online:
Advances in Mechanical Design (ICMD 2017)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 55))

Included in the following conference series:

Abstract

In order to quantitatively analyze the impact of the convective heat transfer, flank and radial leakage for working process of R410A refrigeration scroll compressor thoroughly. Working process of a mathematical model for refrigeration scroll compressor is proposed. The convective heat transfer between refrigerant and scrolls for each working chamber is gotten. The impact of internal leakage and convective heat transfer losses on the temperature, pressure and mass flow of the refrigerant in different working chambers is investigated. The complicated relationship of heat transfer, leakage and pressure, temperature, mass is gotten. Through the comparison for the numerical simulating and experiment results, the accuracy of the presented model is verified. The results from these investigations supply theory support for optimization design and performance improvement of scroll compressor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Peng B, Arnaud L, Vincent L, Xie XZ, Gong HF. Recent Advances on the oil-free Scroll Compressor. Recent Patents Mech Eng. 2016;9(1):37–47.

    Google Scholar 

  2. Peng B, Sun Y. Investigation of mathematical modeling and experiment for variable thickness scroll compressor. J Mech Eng. 2015;51(14):185–91 (in Chinese).

    Article  Google Scholar 

  3. Wagner TC, Marchese AJ. Characterization of thermal pressures in scroll compressors. In: Proceedings of international compressor engineering conference 1992, Purdue University, West Lafayette, Indiana, USA. Indiana: Ray W. Herrick Laboratories Press; 1992. p. 97–106.

    Google Scholar 

  4. Suefuji K, Shiibayashi M, Tojo K. Performance analysis of hermetic scroll compressor. In: Proceedings of international compressor engineering conference 1992, Purdue University, West Lafayette, Indiana, USA. Indiana: Ray W. Herrick Laboratories Press; 1992. p. 75–84.

    Google Scholar 

  5. Yong H. Leakage calculation through clearances. In: Proceedings of international compressor engineering conference 1994, Purdue University, West Lafayette, Indiana, USA. Indiana: Ray W. Herrick Laboratories Press; 1994. p. 93–7.

    Google Scholar 

  6. Sunder S. Thermodynamic and heat transfer modeling of a scroll pump. PhD thesis, Massachusetts Institute of Technology; 1996.

    Google Scholar 

  7. Jang K, Jeong S. Temperature and heat flux measurement inside variable-speed scroll compressor. In: 20th International congress of refrigeration. Sydney: IIR/IIF; 1999. p. 293–302.

    Google Scholar 

  8. Jang K, Jeong S. Experimental investigation on convective heat transfer mechanism in a scroll compressor. Int J Refrig. 2006;29:744–53.

    Article  Google Scholar 

  9. Schein C, Radermacher R. Scroll compressor simulation model. J Eng Gas Turbines Power. 2001;123:217–25.

    Article  Google Scholar 

  10. Lee GH. Performance simulation of scroll compressors. Proc Inst Mech Eng Part A J Power Energy. 2002;216(2):169–79.

    Article  Google Scholar 

  11. Halm NH. Mathematical modeling of scroll compressors. Master of Science Thesis, Purdue University; 1997.

    Google Scholar 

  12. Chen Y, Halm NP, Groll EA, et al. Mathematical modeling of scroll compressors—part I: compression process modeling. Int J Refrig. 2002;25(6):731–64.

    Google Scholar 

  13. Chen Y, Halm NP, Groll EA, et al. Mathematical modeling of scroll compressors—part II: overall scroll compressor modeling. Int J Refrig. 2002;25(6):751–64.

    Google Scholar 

  14. Youn CP, Kim YC, Cho HH. Thermodynamic analysis on the performance of a variable speed scroll compressor with refrigerant injection. Int J Refrig. 2002;25(8):1072–82.

    Article  Google Scholar 

  15. Eric W, Claudio SO, Jean L. Experimental analysis and simplified modeling of a hermetic scroll refrigeration compressor. Appl Therm Eng. 2002;22(2):107–20.

    Article  Google Scholar 

  16. Kim TO. Heat transfer study of a hermetic refrigeration compressor. Appl Therm Eng. 2003;23(15):1931–45.

    Article  Google Scholar 

  17. Kim TO, Zhu J. Convective heat transfer in a scroll compressor chamber: a 2-D simulation. Int J Therm Sci. 2004;43(7):677–88.

    Article  Google Scholar 

  18. Wang BL, Shi WX, Li XT. Mathematical modeling of scroll refrigeration compressor. J Tsinghua Univ. 2005;45(6):726–9.

    Google Scholar 

  19. Wang BL, Li XT, Shi WX. A general geometrical model of scroll compressors based on discretional initial angles of involute. Int J Refrig. 2005;28(6):958–66.

    Article  Google Scholar 

  20. Chen R, Wang W. Discussion on leaking characters in meso-scroll compressor. Int J Refrig. 2009;32(6):1433–41.

    Article  Google Scholar 

  21. Sun SH, Zhao YY, Li LS, Shu PC. Simulation research on scroll refrigeration compressor with external cooling. Int J Refrig. 2010;33(5):897–906.

    Article  Google Scholar 

  22. Jordi R, Joaquim R, Carles DP, Assensi O. Numerical simulation of wrap scroll temperature for refrigeration and air conditioning compressors. In: Proceedings of international compressor engineering conference 2012, Purdue University, West Lafayette, Indiana, USA. Indiana: Ray W. Herrick Laboratories Press; 2012. p. 1380:1–8.

    Google Scholar 

  23. Bell IH, Groll EA, Braun JE, et al. Derivation of optimal scroll compressor wrap for minimization of leakage losses. In: Proceedings of international compressor engineering conference 2012, Purdue University, West Lafayette, Indiana, USA. Indiana: Ray W. Herrick Laboratories Press; 2012. p. 1371:1–8.

    Google Scholar 

  24. Bell IH, Groll EA, Braun JE, et al. A computationally efficient hybrid leakage model for modeling leakage in positive displacement compressors. In: Proceedings of international compressor engineering conference 2012, Purdue University, West Lafayette, Indiana, USA. Indiana: Ray W. Herrick Laboratories Press; 2012. p. 1103:1–10.

    Google Scholar 

  25. Bell IH. Theoretical and experimental analysis of liquid flooded compression in scroll compressors. PhD thesis, Purdue University; 2011.

    Google Scholar 

  26. Marco CD, Evandro LLP, Cesar JD. A lumped thermal parameter model for scroll compressors including the solution of the temperature distribution along the scroll wraps. In: Proceedings of international compressor engineering conference 2012, Purdue University, West Lafayette, Indiana, USA. Indiana: Ray W. Herrick Laboratories Press; 2012. p. 1341:1–10.

    Google Scholar 

  27. Evandro LLP, Cesar JD. A numerical study of convective heat transfer in the compression chambers of scroll compressors. Proceedings of international compressor engineering conference 2012, Purdue University, West Lafayette, Indiana, USA. Indiana: Ray W. Herrick Laboratories Press; 2012. p. 1274:1–6.

    Google Scholar 

  28. Qiang JG, Peng B, Liu ZQ. Dynamic model for the orbiting scroll based on the pressures in scroll chambers-part I: analytical modeling. Int J Refrig. 2013;36(7):1–20.

    Google Scholar 

  29. Qiang JG, Peng B, Liu ZQ. Dynamic model for the orbiting scroll based on the pressures in scroll chambers-part II: investigations on scroll compressors and model validation. Int J Refrig. 2013;36(7):1850–65.

    Article  Google Scholar 

  30. FOX R W, MCDONALD A T. Introduction to fluid mechanics[M]. New York: John Wiley & Sons, 1992.

    Google Scholar 

  31. Incropera FP, Dewitt DP. Fundamentals of heat and mass transfer. New York: Wiley; 1996.

    Google Scholar 

  32. Kakac S, Shah RK. Handbook of single-phase convective heat transfer. New York: Wiley; 1987.

    Google Scholar 

Download references

Acknowledgements

This project is supported by National Natural Science Foundation of China (Grant No. 51275226 51675254) and Longyuan youth innovative support program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, B., Vincent, L., Jin, W. (2018). Heat Transfer and Leakage Analysis for R410A Refrigeration Scroll Compressor. In: Tan, J., Gao, F., Xiang, C. (eds) Advances in Mechanical Design. ICMD 2017. Mechanisms and Machine Science, vol 55. Springer, Singapore. https://doi.org/10.1007/978-981-10-6553-8_95

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6553-8_95

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6552-1

  • Online ISBN: 978-981-10-6553-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics