Advertisement

Molecular Diagnosis and Targeting for Lung Cancer

  • Kazue Yoneda
  • Fumihiro TanakaEmail author
Chapter
Part of the Current Human Cell Research and Applications book series (CHCRA)

Abstract

Lung cancer is the leading cause of cancer deaths associated with poor prognosis. Patients with advanced lung cancer had been “uniformly” treated with platinum-based cytotoxic chemotherapy, which had provided an only modest clinical benefit. However, recent advances in molecular diagnosis and systemic treatment targeting cancer hallmarks such as angiogenesis, oncogenic gene alteration, and evasion from cancer immunity have dramatically changed treatment strategies associated with a tremendous improvement in outcomes of lung cancer patients. Here, we review current status and future perspectives of molecular diagnosis and personalized “precision” medicine for lung cancer.

Keywords

Angiogenesis Oncogenic alteration EGFR (epidermal growth factor receptor) ALK (anaplastic lymphoma kinase) Immune checkpoint inhibitor 

References

  1. 1.
    Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008;359:1367–80.PubMedCrossRefGoogle Scholar
  2. 2.
    Siegel RL, Miller KD, Jemal A. Cancer statistics 2016. CA Cancer J Clin. 2016;6:7–30.CrossRefGoogle Scholar
  3. 3.
    Rudin CM, Ismaila N, Hann CL, et al. Treatment of small-cell lung cancer: american society of clinical oncology endorsement of the American college of chest physicians guideline. J Clin Oncol. 2015;33:4106–11.PubMedCrossRefGoogle Scholar
  4. 4.
    Bunn PA Jr, Minna JD, Augustyn A, et al. Small cell lung cancer: can recent advances in biology and molecular biology be translated into improved outcomes? J Thorac Oncol. 2016;11:453–4748.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Schiller JH, Harrington D, Belani CP, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med. 2002;10(346):92–8.CrossRefGoogle Scholar
  6. 6.
    Ohe Y, Ohashi Y, Kubota K, et al. Randomized phase III study of cisplatin plus irinotecan versus carboplatin plus paclitaxel, cisplatin plus gemcitabine, and cisplatin plus vinorelbine for advanced non-small-cell lung cancer: four-arm cooperative study in Japan. Ann Oncol. 2007;18:317–23.PubMedCrossRefGoogle Scholar
  7. 7.
    Non-Small Cell Lung Cancer Collaborative Group. Chemotherapy and supportive care versus supportive care alone for advanced non-small cell lung cancer. Cochrane Database Syst Rev. 2010;12(5):CD007309.Google Scholar
  8. 8.
    Hanahan D, Weingberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.PubMedCrossRefGoogle Scholar
  9. 9.
    Kohno T, Ichikawa H, Totoki Y, et al. KIF5B-RET fusions in lung adenocarcinoma. Nat Med. 2012;18:375–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Takeuchi K, Soda M, Togashi Y, et al. RET, ROS1 and ALK fusions in lung cancer. Nat Med. 2012;18:378–81.PubMedCrossRefGoogle Scholar
  11. 11.
    Barlesi F, Mazieres J, Merlio JP, et al. Routine molecular profiling of patients with advanced non-small-cell lung cancer: results of a 1-year nationwide programme of the French cooperative thoracic intergroup (IFCT). Lancet. 2016;387:1415–26.PubMedCrossRefGoogle Scholar
  12. 12.
    Li T, Kung HJ, Mack PC, Gandara DR. Genotyping and genomic profiling of non-small cell lung cancer: implications for current and future therapies. J Clin Oncol. 2013;31:1039–49.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Tsao AS, Scagliotti GV, Bunn PA Jr, et al. Scientific advances in lung cancer 2015. J Thorac Oncol. 2016;11:613–38.PubMedCrossRefGoogle Scholar
  14. 14.
    Kobayashi Y, Mitsudomi T. Not all epidermal growth factor receptor mutations in lung cancer are created equal: perspectives for individualized treatment strategy. Cancer Sci. 2016;107:1179–86.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lindeman NI, Cagle PT, Beasley MB, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Thorac Oncol. 2013;8:823–59.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Masters GA, Temin S, Azzoli CG, et al. American Society of Clinical Oncology clinical practice systemic therapy for stage IV non-small-cell lung cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2015;33:3488–515.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Folkman J. Clinical applications of research on angiogenesis. N Engl J Med. 1995;333:1757–63.PubMedCrossRefGoogle Scholar
  18. 18.
    Hanahan D, Folkman J. Patterns and emerging mechanism of the angiogenic switch during tumorigenesis. Cell. 1996;86:353–64.PubMedCrossRefGoogle Scholar
  19. 19.
    Bremnes RM, Camps C, Sirera R. Angiogenesis in non-small cell lung cancer: the prognostic impact of neoangiogenesis and the cytokines and bFGF in tumors and blood. Lung Cancer. 2006;51:143–58.PubMedCrossRefGoogle Scholar
  20. 20.
    Horn L, Dahlberg SE, Sandler AB, et al. Phase II study of cisplatin plus etoposide and bevacizumab for previously untreated, extensive-stage small-cell lung cancer: eastern cooperative oncology group study E3501. J Clin Oncol. 2009;27:6006–11.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Spigel DR, Townley PM, Waterhouse DM, et al. Randomized phase II study of bevacizumab in combination with chemotherapy in previously untreated extensive-stage small-cell lung cancer: results from the SALUTE trial. J Clin Oncol. 2011;29:2215–22.PubMedCrossRefGoogle Scholar
  22. 22.
    Ready NE, Dudek AZ, Pang HH, et al. Cisplatin, irinotecan, and bevacizumab for untreated extensive-stage small-cell lung cancer: CALGB 30306, a phase II study. J Clin Oncol. 2011;29:4436–41.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Pujol JL, Lavole A, Quoix E, et al. Randomized phase II-III study of bevacizumab in combination with chemotherapy in previously untreated extensive small-cell lung cancer: results from the IFCT-0802 trial. Ann Oncol. 2015;26:908–14.PubMedCrossRefGoogle Scholar
  24. 24.
    Sandler A, Gray R, Perry MC, et al. Pacritaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006;355:2542–50.PubMedCrossRefGoogle Scholar
  25. 25.
    Reck M, von Pawel J, Zatloukal P, et al. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol. 2009;27:1227–34.PubMedCrossRefGoogle Scholar
  26. 26.
    Reck M, von Pawel J, Zatloukal P, et al. Overall survival with cisplatin-gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: results from a randomised phase III trial (AVAiL). Ann Oncol. 2010;21:1804–9.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Zhou C, Wu YL, Chen G, et al. BEYOND: a randomized, double-blind, placebo-controlled, multicenter, phase III study of first-line carboplatin/paclitaxel plus bevacizumab or placebo in Chinese patients with advanced or recurrent nonsquamous non-small-cell lung cancer. J Clin Oncol. 2015;33:2197–204.PubMedCrossRefGoogle Scholar
  28. 28.
    Gorbunova V, Kowalyszyn RD, Pikiel J, et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet. 2014;384:665–73.PubMedCrossRefGoogle Scholar
  29. 29.
    Reck M, Kaiser R, Mellemgaard A, et al. LUME-lung 1 study group. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-lung 1): a phase 3, double-blind, randomised controlled trial. Lancet Oncol. 2014;15:143–55.PubMedCrossRefGoogle Scholar
  30. 30.
    Johnson DH, Fehrenbacher L, Novotny WF, et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol. 2004;22:2184–91.PubMedCrossRefGoogle Scholar
  31. 31.
    Richeldi L, du Bois RM, Raghu G, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2071–82.PubMedCrossRefGoogle Scholar
  32. 32.
    Dowlati A, Gray R, Sandler AB, Schiller JH, Johnson DH. Cell adhesion molecules, vascular endothelial growth factor, and basic fibroblast growth factor in patients with non-small cell lung cancer treated with chemotherapy with or without bevacizumab - an eastern cooperative oncology group study. Clin Cancer Res. 2008;14:1407–12.PubMedCrossRefGoogle Scholar
  33. 33.
    Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350:2129–39.PubMedCrossRefGoogle Scholar
  34. 34.
    Paez JG, Jänne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497–500.PubMedCrossRefGoogle Scholar
  35. 35.
    Saito M, Shiraishi K, Kunitoh H, Takenoshita S, Yokota J, Kohno T. Gene aberrations for precision medicine against lung adenocarcinoma. Cancer Sci. 2016;107:713–20.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Sonobe M, Manabe T, Wada H, Tanaka F. Mutations in the epidermal growth factor receptor gene are linked to smoking-independent, lung adenocarcinoma. Br J Cancer. 2005;93:355–63.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Sonobe M, Manabe T, Wada H, Tanaka F. Lung adenocarcinoma harboring mutations in the ERBB2 kinase domain. J Mol Diagn. 2006;8:351–6.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Rahman S, Kondo N, Yoneda K. Frequency of epidermal growth factor receptor mutations in Bangladeshi patients with adenocarcinoma of the lung. Int J Clin Oncol. 2014;19:45–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Schlessinger J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell. 2002;110:669–72.PubMedCrossRefGoogle Scholar
  40. 40.
    Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141:1117–34.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Lemmon MA, Schlessinger J, Ferguson KM. The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring Harb Perspect Biol. 2014;6:a020768.  https://doi.org/10.1101/cshperspect.a020768.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Kovacs E, Zorn JA, Huang Y, Barros T, Kuriyan J. A structural perspective on the regulation of the epidermal growth factor receptor. Annu Rev Biochem. 2015;84:739–64.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Roskoski R Jr. ErbB/HER protein-kinases: structures and small molecule inhibitors. Pharmacol Res. 2014;87:42–59.PubMedCrossRefGoogle Scholar
  44. 44.
    Blume-Jensen P, Hunter T. Oncogenic kinase signaling. Nature. 2001;411:355–65.PubMedCrossRefGoogle Scholar
  45. 45.
    Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2:127–37.PubMedCrossRefGoogle Scholar
  46. 46.
    Kumar A, Perti ET, Halmos B, Boggon T. Structure and clinical relevance of the epidermal growth factor receptor in human cancer. J Clin Oncol. 2008;26:1742–51.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Pao W, Miller V, Zakowski M, et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A. 2004;101:13306–11.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Shigematsu H, Lin L, Takahashi T, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst. 2005;97:339–46.PubMedCrossRefGoogle Scholar
  49. 49.
    Kosaka T, Yatabe Y, Endoh H, Kuwano H, Takahashi T, Mitsudomi T. Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Res. 2004;64:8919–23.PubMedCrossRefGoogle Scholar
  50. 50.
    Yun CH, Boggon TJ, Li Y, Woo MS, Greulich H, Meyerson M, et al. Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell. 2007;11:217–27.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Ji H, Li D, Chen L, Shimamura T. The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer Cell. 2006;9:485–95.PubMedCrossRefGoogle Scholar
  52. 52.
    Sordella R, Bell DW, Haber DA, Settleman J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science. 2004;305:1163–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Shan Y, Eastwood MP, Zhang X. Oncogenic mutations counteract intrinsic disorder in the EGFR kinase and promote receptor dimerization. Cell. 2012;149:860–70.PubMedCrossRefGoogle Scholar
  54. 54.
    Dearden S, Stevens J, Wu YL, Blowers D. Mutation incidence and coincidence in non small-cell lung cancer: meta-analyses by ethnicity and histology (mutMap). Ann Oncol. 2013;24:2371–6.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Midha A, Dearden S, McCormack R. EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: a systematic review and global map by ethnicity (mutMapII). Am J Cancer Res. 2015;5:2892–911.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Chapman AM, Sun KY, Reustow P, Cowan DM, Madl AK. Lung cancer mutation profile of EGFR, ALK, and KRAS: meta-analysis and comparison of never and ever smokers. Lung Cancer. 2016;102:122–34.PubMedCrossRefGoogle Scholar
  57. 57.
    Weinstein IB, Joe A. Oncogene addiction. Cancer Res. 2008;68:3077–80.PubMedCrossRefGoogle Scholar
  58. 58.
    Carey KD, Garton AJ, Romero MS. Kinetic analysis of epidermal growth factor receptor somatic mutant proteins shows increased sensitivity to the epidermal growth factor receptor tyrosine kinase inhibitor, erlotinib. Cancer Res. 2006;66:8163–71.PubMedCrossRefGoogle Scholar
  59. 59.
    Carlson JJ, Garrison LP, Ramsey SD, Veenstra DL. Epidermal growth factor receptor genomic variation in NSCLC patients receiving tyrosine kinase inhibitor therapy: a systematic review and meta-analysis. J Cancer Res Clin Oncol. 2009;135:1483–93.PubMedCrossRefGoogle Scholar
  60. 60.
    Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361:947–57.PubMedCrossRefGoogle Scholar
  61. 61.
    Fukuoka M, Wu YL, Thongprasert S, et al. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J Clin Oncol. 2010;29:2866–74.CrossRefGoogle Scholar
  62. 62.
    Maemondo M, Inoue A, Kobayashi K. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362:2380–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Inoue A, Kobayashi K, Maemondo M. Updated overall survival results from a randomized phase III trial comparing gefitinib with carboplatin-paclitaxel for chemo-naïve non-small cell lung cancer with sensitive EGFR gene mutations (NEJ002). Ann Oncol. 2013;24:54–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Mitsudomi T, Morita S, Yatabe Y, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 2010;11:121–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Zhou C, Wu YL, Chen G, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011;12:735–42.PubMedCrossRefGoogle Scholar
  66. 66.
    Zhou C, Wu YL, Chen G. Final overall survival results from a randomised, phase III study of erlotinib versus chemotherapy as first-line treatment of EGFR mutation-positive advanced non-small-cell lung cancer (OPTIMAL, CTONG-0802). Ann Oncol. 2015;26:1877–83.PubMedCrossRefGoogle Scholar
  67. 67.
    Rosell R, Carcereny E, Gervais R, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012;13:239–46.PubMedCrossRefGoogle Scholar
  68. 68.
    Wu YL, Zhou C, Liam CK, et al. First-line erlotinib versus gemcitabine/cisplatin in patients with advanced EGFR mutation-positive non-small-cell lung cancer: analyses from the phase III, randomized, open-label, ENSURE study. Ann Oncol. 2015;26:1883–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Sequist LV, Yang JC, Yamamoto N, et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol. 2013;31:3327–34.PubMedCrossRefGoogle Scholar
  70. 70.
    Yang JC, Wu YL, Schuler M, et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-lung 3 and LUX-lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol. 2015;16:141–51.PubMedCrossRefGoogle Scholar
  71. 71.
    Wu YL, Zhou C, Hu CP, et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-lung 6): an open-label, randomised phase 3 trial. Lancet Oncol. 2014;15:213–22.PubMedCrossRefGoogle Scholar
  72. 72.
    Park K, Tan EH, O'Byrne K, et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-lung 7): a phase 2B, open-label, randomised controlled trial. Lancet Oncol. 2016;17:577–89.PubMedCrossRefGoogle Scholar
  73. 73.
    Paz-Ares L, Tan EH, Zhang L, et al. Afatinib (a) vs gefitinib (G) in patients (pts) with EGFR mutation-positive (EGFRm+) non-small-cell lung cancer (NSCLC): overall survival (OS) data from the phase IIb trial LUX-lung 7(LL7). Ann Oncol. 2016;27(suppl 6):vi589. (abstract LBA43 PR)Google Scholar
  74. 74.
    Keating GM. Afatinib: a review in advanced non-small cell lung cancer. Target Oncol. 2016;11:825–35.PubMedCrossRefGoogle Scholar
  75. 75.
    Sebastian M, Schmittel A, Reck M. First-line treatment of EGFR-mutated nonsmall cell lung cancer: critical review on study methodology. Eur Respir Rev. 2014;23:92–105.PubMedCrossRefGoogle Scholar
  76. 76.
    Socinski MA, Evans T, Gettinger S, et al. Treatment of stage IV non-small cell lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e341S–68S.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Novello S, Barlesi F, Califano R, et al. ESMO guidelines committee. Metastatic non-small-cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016;27(suppl 5):v1–v27.PubMedCrossRefGoogle Scholar
  78. 78.
    Kobayashi S, Boggon TJ, Dayaram T. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005;352:786–92.PubMedCrossRefGoogle Scholar
  79. 79.
    Yu HA, Arcila ME, Rekhtman N, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. 2013;19:2240–7.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Camidge DR, Pao W, Sequist LV. Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat Rev Clin Oncol. 2014;11:473–81.PubMedCrossRefGoogle Scholar
  81. 81.
    Zhou C, Yao LD. Strategies to improve outcomes of patients with EGRF-mutant non-small cell lung cancer: review of the literature. J Thorac Oncol. 2016;11:174–86.PubMedCrossRefGoogle Scholar
  82. 82.
    Pao W, Miller VA, Politi KA, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005;2(3):e73.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Kwak EL, Sordella R, Bell DW, et al. Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc Natl Acad Sci U S A. 2005;102:7665–70.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Yun CH, Mengwasser KE, Toms AV, et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci U S A. 2008;105:2070–5.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Li D, Ambrogio L, Shimamura T, et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene. 2008;27:4702–11.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Miller VA, Hirsh V, Cadranel J, et al. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-lung 1): a phase 2b/3 randomised trial. Lancet Oncol. 2012;13:528–38.PubMedCrossRefGoogle Scholar
  87. 87.
    Katakami N, Atagi S, Goto K. LUX-lung 4: a phase II trial of afatinib in patients with advanced non-small-cell lung cancer who progressed during prior treatment with erlotinib, gefitinib, or both. J Clin Oncol. 2013;31:3335–41.PubMedCrossRefGoogle Scholar
  88. 88.
    Zhou W, Ercan D, Chen L, et al. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature. 2009;462:1070–4.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Ohashi K, Maruvka YE, Michor F, Pao W. Epidermal growth factor receptor tyrosine kinase inhibitor-resistant disease. J Clin Oncol. 2013;31:1070–80.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Ercan D, Choi HG, Yun CH, et al. EGFR mutations and resistance to irreversible pyrimidine-based EGFR inhibitors. Clin Cancer Res. 2015;21:3913–23.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Hossam M, Lasheen DS, Abouzid KA. Covalent EGFR inhibitors: binding mechanisms, synthetic approaches, and clinical profiles. Arch Pharm (Weinheim). 2016;349:573–93.CrossRefGoogle Scholar
  92. 92.
    Yver A. Osimertinib (AZD9291)–a science-driven, collaborative approach to rapid drug design and development. Ann Oncol. 2016;27:1165–70.PubMedCrossRefGoogle Scholar
  93. 93.
    Cross DA, Ashton SE, Ghiorghiu S. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 2014;4:1046–61.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Jänne PA, Yang JC, Kim DW, et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med. 2015;372:1689–99.PubMedCrossRefGoogle Scholar
  95. 95.
    Goss G, Tsai CM, Shepherd FA, et al. Osimertinib for pretreated EGFR Thr790Met-positive advanced non-small-cell lung cancer (AURA2): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2016;17:1643–52.PubMedCrossRefGoogle Scholar
  96. 96.
    Mok TS, Wu YL, Ahn MJ, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med. 2016;376(7):629–40.PubMedCrossRefGoogle Scholar
  97. 97.
    Socinski MA, Villaruz LC, Ross J. Understanding mechanisms of resistance in the epithelial growth factor receptor in non-small cell lung cancer and the role of biopsy at progression. Oncologist. 2016;22:3–11.PubMedCrossRefGoogle Scholar
  98. 98.
    Tan DS, Yom SS, Tsao MS, et al. The International Association for the Study of Lung Cancer consensus statement on optimizing management of EGFR mutation-positive non-small cell lung cancer: status in 2016. J Thorac Oncol. 2016;11:946–63.PubMedCrossRefGoogle Scholar
  99. 99.
    Mayor S. Osimertinib effective in EGFR T790M-positive lung cancer. Lancet Oncol. 2016;18(1):e9.PubMedCrossRefGoogle Scholar
  100. 100.
    Mano H. ALKoma: a cancer subtype with a shared target. Cancer Discov. 2012;2:495–502.PubMedCrossRefGoogle Scholar
  101. 101.
    Pulford K, Lamant L, Morris SW, et al. Detection of anaplastic lymphoma kinase (ALK) and nucleolar protein nucleophosmin (NPM)-ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1. Blood. 1997;89:1394–404.PubMedGoogle Scholar
  102. 102.
    Morris SW, Kirstein MN, Valentine MB, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263:1281–4.PubMedCrossRefGoogle Scholar
  103. 103.
    Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–6.PubMedCrossRefGoogle Scholar
  104. 104.
    Takeuchi K, Choi YL, Togashi Y, et al. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res. 2009;15:3143–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Togashi Y, Soda M, Sakata S, et al. KLC1-ALK: a novel fusion in lung cancer identified using a formalin-fixed paraffin-embedded tissue only. PLoS One. 2012;7(2):e31323.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Takeuchi K, Choi YL, Soda M, et al. Multiplex reverse transcription-PCR screening for EML4-ALK fusion transcripts. Clin Cancer Res. 2008;14:6618–24.PubMedCrossRefGoogle Scholar
  107. 107.
    Kerr KM, López-Ríos F. Precision medicine in NSCLC and pathology: how does ALK fit in the pathway? Ann Oncol. 2016;27(Suppl 3):iii16–24.PubMedCrossRefGoogle Scholar
  108. 108.
    Blackhall F, Cappuzzo F. Crizotinib: from discovery to accelerated development to front-line treatment. Ann Oncol. 2016;27(Suppl 3):iii35–41.PubMedCrossRefGoogle Scholar
  109. 109.
    Kwak EL, Bang YJ, Camidge DR, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363:1693–703.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Camidge DR, Bang YJ, Kwak EL, et al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol. 2012;13:1011–9.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Solomon BJ, Mok T, Kim DW, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014;371:2167–77.PubMedCrossRefGoogle Scholar
  112. 112.
    Shaw AT, Kim DW, Nakagawa K, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368:2385–94.PubMedCrossRefGoogle Scholar
  113. 113.
    Nokihara H, Hida T, Kondo M, et al. Alectinib (ALC) versus crizotinib (CRZ) in ALK-inhibitor naive ALK-positive nonsmall-cell lung cancer (ALKþ NSCLC): primary results from the J-ALEX study. J Clin Oncol. 2016;34(suppl):abstract 9008.Google Scholar
  114. 114.
    Dagogo-Jack I, Shaw AT. Crizotinib resistance: implications for therapeutic strategies. Ann Oncol. 2016;27(Suppl 3):iii42–50.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Katayama R, Shaw AT, Khan TM, et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci Transl Med. 2012;4(120):120ra17.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Doebele RC, Pilling AB, Aisner DL, et al. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res. 2012;18:1472–82.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Gainor JF, Dardaei L, Yoda S, et al. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov. 2016;6:1118–33.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Shaw AT, Kim DW, Mehra R, et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med. 2014;370:1189–97.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Kim DW, Mehra R, Tan DS, et al. Activity and safety of ceritinib in patients with ALK-rearranged non-small-cell lung cancer (ASCEND-1): updated results from the multicentre, open-label, phase 1 trial. Lancet Oncol. 2016;17:452–63.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Crinò L, Ahn MJ, De Marinis F, et al. Multicenter phase II study of whole-body and intracranial activity with ceritinib in patients with ALK-rearranged non-small-cell lung cancer previously treated with chemotherapy and crizotinib: results from ASCEND-2. J Clin Oncol. 2016;34:2866–73.PubMedCrossRefGoogle Scholar
  121. 121.
    Gadgeel SM, Gandhi L, Riely GJ, et al. Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncol. 2014;15:1119–28.PubMedCrossRefGoogle Scholar
  122. 122.
    Shaw AT, Gandhi L, Gadgeel S, et al. Alectinib in ALK-positive, crizotinib-resistant, non-small-cell lung cancer: a single-group, multicentre, phase 2 trial. Lancet Oncol. 2016;17:234–42.PubMedCrossRefGoogle Scholar
  123. 123.
    Gettinger SN, Bazhenova LA, Langer CJ, et al. Activity and safety of brigatinib in ALK-rearranged non-small-cell lung cancer and other malignancies: a single-arm, open-label, phase 1/2 trial. Lancet Oncol. 2016;17:1683–96.PubMedCrossRefGoogle Scholar
  124. 124.
    Seto T, Kiura K, Nishio M, et al. CH5424802 (RO5424802) for patients with ALK-rearranged advanced non-small-cell lung cancer (AF-001JP study): a single-arm, open-label, phase 1-2 study. Lancet Oncol. 2013;14:590–8.PubMedCrossRefGoogle Scholar
  125. 125.
    Zhu Q, Zhan P, Zhang X, Lv T, Song Y. Clinicopathologic characteristics of patients with ROS1 fusion gene in non-small cell lung cancer: a meta-analysis. Transl Lung Cancer Res. 2015;4:300–9.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Shaw AT, Ou SH, Bang YJ, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med. 2014;371:1963–71.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Yoh K, Seto T, Satouchi M, et al. Vandetanib in patients with previously treated RET-rearranged advanced non-small-cell lung cancer (LURET): an open-label, multicentre phase 2 trial. Lancet Respir Med. 2017;5:42–50.PubMedCrossRefGoogle Scholar
  128. 128.
    Planchard D, Kim TM, Mazieres J, et al. Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: a single-arm, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016;17:642–50.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Planchard D, Besse B, Groen HJ, et al. Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Dabrafenib plus trametinib in patients with previously treated BRAFV600E-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol. 2016;17:984–93.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Frampton GM, Ali SM, Rosenzweig M, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015;5:850–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Awad MM, Oxnard GR, Jackman DM, et al. MET exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-met overexpression. J Clin Oncol. 2016;34:721–30.PubMedCrossRefGoogle Scholar
  132. 132.
    Wood K, Hensing T, Malik R, Salgia R. Prognostic and predictive value in KRAS in non-small-cell lung cancer: a review. JAMA. 2016;2:805–12.Google Scholar
  133. 133.
    Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480:480–9.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39:1–10.PubMedCrossRefGoogle Scholar
  135. 135.
    Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Gettinger SN, Horn L, Gandhi L, et al. Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol. 2015;33:2004–12.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Rizvi NA, Mazières J, Planchard D, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 2015;16:257–65.PubMedCrossRefGoogle Scholar
  140. 140.
    Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33.PubMedCrossRefGoogle Scholar
  141. 141.
    Socinski M, Creelan B, Horn L, et al. CheckMate 026: a phase 3 trial of nivolumab vs investigator's choice (IC) of platinum-based doublet chemotherapy (PT-DC) as first-line therapy for stage IV/recurrent programmed death ligand 1 (PD-L1)-positive NSCLC. Ann Oncol. 2016;27(suppl 6):vi588. (abstract LBA7 PR)Google Scholar
  142. 142.
    Herbst RS, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387:1540–50.PubMedCrossRefGoogle Scholar
  143. 143.
    Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123–35.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373:1627–239.PubMedCrossRefGoogle Scholar
  145. 145.
    Fehrenbacher L, Spira A, Ballinger M, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387:1837–46.PubMedCrossRefGoogle Scholar
  146. 146.
    Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2016;389(10066):255–65.PubMedCrossRefGoogle Scholar
  147. 147.
    Yu H, Boyle TA, Zhou C, Rimm DL, Hirsch FR. PD-L1 expression in lung cancer. J Thorac Oncol. 2016;11:964–75.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Shien K, Papadimitrakopoulou VA, Wistuba II. Predictive biomarkers of response to PD-1/PD-L1 immune checkpoint inhibitors in non-small cell lung cancer. Lung Cancer. 2016;99:79–87.PubMedCrossRefGoogle Scholar
  149. 149.
    Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018–28.PubMedCrossRefGoogle Scholar
  150. 150.
    Langer CJ, Gadgeel SM, Borghaei H, et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol. 2016;17:1497–508.PubMedCrossRefGoogle Scholar
  151. 151.
    Herbst RS, Soria JC, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515:563–7.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Hirsch FR, McElhinny A, Stanforth D, et al. PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the “blueprint PD-L1 IHC assay comparison project”. J Thorac Oncol. 2016;12(2):208–22.  https://doi.org/10.1016/j.jtho.2016.11.2228.PubMedCrossRefGoogle Scholar
  153. 153.
    Facchinetti F, Marabelle A, Rossi G, Soria JC, Besse B, Tiseo M. Moving immune checkpoint blockade in thoracic tumors beyond NSCLC. J Thorac Oncol. 2016;11:1819–36.PubMedCrossRefGoogle Scholar
  154. 154.
    Reck M, Bondarenko I, Luft A, et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensive-disease-small-cell lung cancer. Results from a randomized, double-blind, multicenter phase 2 trial. Ann Oncol. 2013;24:75–83.PubMedCrossRefGoogle Scholar
  155. 155.
    Reck M, Luft A, Szczesna A, et al. Phase III randomized trial of ipilimumab plus etoposide and platinum versus placebo plus etoposide and platinum in extensive-stage small-cell lung cancer. J Clin Oncol. 2016;34:3740–8.CrossRefGoogle Scholar
  156. 156.
    Antonia SJ, López-Martin JA, Bendell J, et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicenter, open-label, phase 1/2 trial. Lancet Oncol. 2016;17:883–95.PubMedCrossRefGoogle Scholar
  157. 157.
    Tanaka F, Yoneda K, Hasegawa S. Circulating tumor cells (CTCs) in lung cancer: current status and future perspectives. Lung Cancer Targets Ther. 2010;1:77–84.CrossRefGoogle Scholar
  158. 158.
    Sacher AG, Paweletz C, Dahlberg SE, et al. Prospective validation of rapid plasma genotyping for the detection of EGFR and KRAS mutations in advanced lung cancer. JAMA Oncol. 2016;2:1014–22.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Oxnard GR, Thress KS, Alden RS, et al. Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non-small-cell lung cancer. J Clin Oncol. 2016;34:3375–82.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Second Department of SurgeryUniversity of Occupational and Environmental HealthFukuokaJapan

Personalised recommendations