Designing a Biosensor Using a Photonic Quasi-Crystal Fiber with Fan-Shaped Analyte Channel

  • Suoda Chu
  • Nakkeeran Kaliyaperumal
  • G. Melwin
  • Sumeet S. Aphale
  • P. Ramesh Babu Kalivaradhan
  • Senthilnathan Karthikrajan
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 751)


In this research work, we design a biosensor using a six-fold photonic quasi-crystal fiber with a fan-shaped analyte channel based on surface plasmon resonance (SPR). We numerically analyze both the dispersion relations and loss spectra for three different refractive indices of the analyte, \(n_{a}\), using finite element method. Through optimization of the structure, we find that the proposed biosensor exhibits a maximum refractive index sensitivity of 3200 nm/RIU and a resolution of \(3.12\times 10^{-5}\) RIU when \(n_a\) is increased from 1.41 to 1.43. We infer that the coupling between the core mode and SPR mode can be explained as a complete coupling of the loss matching condition or an incomplete coupling of the phase matching condition. Owing to the ease of fabrication of the proposed biosensor with an average sensitivity of 2250 nm/RIU, we envisage that this biosensor could turn out to be a versatile instrument for detecting the biomolecules.


Fan-shaped Photonic quasi-crystal fiber Refractive index sensor Surface plasmon resonance Sensitivity 


  1. 1.
    Shuai, B., Xia, L., Zhang, Y., Liu, D.: A multi-core holey fiber based plasmonic sensor with large detection range and high linearity. Opt. Express 20(6), 5974–5986 (2012)CrossRefGoogle Scholar
  2. 2.
    Rifat, A.A., Mahdiraji, G.A., Chow, D.M., Shee, Y.G., Ahmed, R., Adikan, F.R.M.: Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors 15(5), 11499–11510 (2015)CrossRefGoogle Scholar
  3. 3.
    An, G., Li, S., Yan, X., Zhang, X., Yuan, Z., Wang, H., Zhang, Y., Hao, X., Shao, Y., Han, Z.: Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance. Plasmonics 12(2), 465–471 (2017)CrossRefGoogle Scholar
  4. 4.
    Design a Biosensor Using a Stampli Photonic Quasi-Crystal Fiber. ACTA Press (2016)Google Scholar
  5. 5.
    Luan, N., Yao, J.: Surface plasmon resonance sensor based on exposed-core microstructured optical fiber placed with a silver wire. IEEE Photonics J. 8(1), 1–8 (2016)Google Scholar
  6. 6.
    Zhao, Y., Deng, Z.-Q., Li, J.: Photonic crystal fiber based surface plasmon resonance chemical sensors. Sens. Actuators B: Chem. 202, 557–567 (2014)CrossRefGoogle Scholar
  7. 7.
    Bing, P., Yao, J., Ying, L., Li, Z.: A surface-plasmon-resonance sensor based on photonic-crystal-fiber with large size microfluidic channels. Opt. Appl. 42(3), 493–501 (2012)Google Scholar
  8. 8.
    Mamun, M.A.A., Islam, M.A., Alam, M.S.: A square lattice photonic crystal fiber based surface plasmon resonance sensor with high sensitivity. In: 2014 International Conference on Electrical Engineering and Information Communication Technology, pp. 1–5, April 2014Google Scholar
  9. 9.
    Wei-Hua, W.J.S., Cheng-Jie, Y.: D-shaped photonic crystal fiber refractive index and temperature sensor based on surface plasmon resonance and directional coupling. Acta Phys. Sin. 64(22), 224221 (2015)Google Scholar
  10. 10.
    Ying, Y., Si, G.Y., Luan, F.J., Xu, K., Qi, Y.W., Li, H.N.: Recent research progress of optical fiber sensors based on D-shaped structure. Opt. Laser Technol. 90, 149–157 (2017)CrossRefGoogle Scholar
  11. 11.
    Gandhi, M.S.A., Sivabalan, S., Babu, P.R., Senthilnathan, K.: Designing a biosensor using a photonic quasi-crystal fiber. IEEE Sens. J. 16(8), 2425–2430 (2016)CrossRefGoogle Scholar
  12. 12.
    Sivabalan, S., Raina, J.P.: High normal dispersion and large mode area photonic quasi-crystal fiber stretcher. IEEE Photonics Technol. Lett. 23(16), 1139–1141 (2011)CrossRefGoogle Scholar
  13. 13.
    Beadie, G., Brindza, M., Flynn, R.A., Rosenberg, A., Shirk, J.S.: Refractive index measurements of poly (methyl methacrylate) (PMMA) from 0.4–1.6 \(\upmu \)m. Appl. Opt. 54(31), F139–F143 (2015)CrossRefGoogle Scholar
  14. 14.
    Hassani, A., Skorobogatiy, M.: Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors. J. Opt. Soc. Am. B 24(6), 1423–1429 (2007)CrossRefGoogle Scholar
  15. 15.
    Zhang, P.-P., Yao, J.-Q., Cui, H.-X., Ying, L.: A surface plasmon resonance sensor based on a multi-core photonic crystal fiber. Optoelectron. Lett. 9(5), 342–345 (2013)CrossRefGoogle Scholar
  16. 16.
    Fan, Z., Li, S., Liu, Q., An, G., Chen, H., Li, J., Chao, D., Li, H., Zi, J., Tian, W.: High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance. IEEE Photonics J. 7(3), 1–9 (2015)CrossRefGoogle Scholar
  17. 17.
    Otupiri, R., Akowuah, E.K., Haxha, S., Ademgil, H., AbdelMalek, F., Aggoun, A.: A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photonics J. 6(4), 1–11 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Suoda Chu
    • 1
  • Nakkeeran Kaliyaperumal
    • 1
  • G. Melwin
    • 2
  • Sumeet S. Aphale
    • 1
  • P. Ramesh Babu Kalivaradhan
    • 2
  • Senthilnathan Karthikrajan
    • 2
  1. 1.School of Engineering, Fraser Noble BuildingUniversity of AberdeenAberdeenUK
  2. 2.Department of Physics, School of Advanced SciencesVIT UniversityVelloreIndia

Personalised recommendations