Segmentation of Bengali Handwritten Conjunct Characters Through Structural Disintegration

  • Rahul PramanikEmail author
  • Soumen Bag
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 776)


Substantial size of convoluted conjunct characters in Bengali language makes the recognition process burdensome. In this paper, we propose a structural disintegration based segmentation technique that fragments the conjunct characters into discernible shapes for better recognition accuracy. We use a set of structure based segmentation rules that bifurcates the characters into discernible shape components. The bifurcation is done by finding the touching region where two basic shapes coincide to form a conjunct character. The proposed method has been tested on a data set of Bengali handwritten conjunct characters efficiently. In future, we will continue our work to incorporate it as a prominent preprocessing step for Bengali optical character recognition system.


Bengali Handwritten Segmentation OCR 


  1. 1.
    Omidyeganeh, M., Azmi, R., Nayebi, K., Javadtalab, A.: A new method to improve multi font Farsi/Arabic character segmentation results: using extra classes of some character combinations. In: Cham, T.-J., Cai, J., Dorai, C., Rajan, D., Chua, T.-S., Chia, L.-T. (eds.) MMM 2007. LNCS, vol. 4351, pp. 670–679. Springer, Heidelberg (2006). doi: 10.1007/978-3-540-69423-6_65 CrossRefGoogle Scholar
  2. 2.
    Wshah, S., Shi, Z., Govindaraju, V.: Segmentation of Arabic handwriting based on both contour and skeleton segmentation. In: International Conference on Document Analysis and Recognition, pp. 793–797 (2009)Google Scholar
  3. 3.
    Tan, J., Lai, J.H., Wang, C.D., Wang, W.X., Zuo, X.X.: A new handwritten character segmentation method based on nonlinear clustering. Neurocomputing 89, 213–219 (2012)CrossRefGoogle Scholar
  4. 4.
    Khan, A.R., Mohammad, Z.: A simple segmentation approach for unconstrained cursive handwritten words in conjunction with the neural network. Int. J. Image Process. 2(3), 29–35 (2008)MathSciNetGoogle Scholar
  5. 5.
    Lee, H., Verma, B.: Binary segmentation algorithm for English cursive handwriting recognition. Pattern Recogn. 45(4), 1306–1317 (2012)CrossRefGoogle Scholar
  6. 6.
    Kumar, M., Jindal, M.K., Sharma, R.K.: Segmentation of isolated and touching characters in offline handwritten Gurmukhi script recognition. Int. J. Inf. Technol. Comput. Sci. 6(2), 58–63 (2014)Google Scholar
  7. 7.
    Bag, S., Bhowmick, P., Harit, G., Biswas, A.: Character segmentation of handwritten Bangla text by vertex characterization of isothetic covers. In: Proceedings of the National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics, pp. 21–24 (2011)Google Scholar
  8. 8.
    Sarkar, R., Das, N., Basu, S., Kundu, M., Nasipuri, M., Basu, D.K.: A two-stage approach for segmentation of handwritten Bangla word images. In: Proceedings of the International Conference on Frontiers in Handwriting Recognitions, pp. 403–408 (2008)Google Scholar
  9. 9.
    Pal, U., Wakabayashi, T., Kimura, F.: Handwritten Bangla compound character recognition using gradient feature. In: Proceedings of the International Conference on Information Technology, pp. 208–213 (2007)Google Scholar
  10. 10.
    Das, N., Basu, S., Sarkar, R., Kundu, M., Nasipuri, M., Basu, D.K.: Handwritten Bangla compound character recognition: potential challenges and probable solution. In: Proceedings of the Indian International Conference on Artificial Intelligence, pp. 1901–1913 (2009)Google Scholar
  11. 11.
    Das, N., Das, B., Sarkar, R., Basu, S., Kundu, M., Nasipuri, M.: Handwritten Bangla basic and compound character recognition using MLP and SVM classifier. J. Comput. 2(2), 109–115 (2010)Google Scholar
  12. 12.
    Das, N., Acharya, K., Sarkar, R., Basu, S., Kundu, M., Nasipuri, M.: A novel GA-SVM based multistage approach for recognition of handwritten Bangla compound characters. In: Satapathy, S.C., Avadhani, P.S., Abraham, A. (eds.) Proceedings of the InConINDIA 2012. AISC, vol. 132, pp. 145–152. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-27443-5_17 Google Scholar
  13. 13.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27(3), 236–239 (1984)CrossRefGoogle Scholar
  15. 15.
    Rosenfeld, A., Kak, A.: Digital Picture Processing, vol. 1 and 2, 2nd edn. Academic Press, New York (1982)zbMATHGoogle Scholar
  16. 16.
    Das, N., Acharya, K., Sarkar, R., Basu, S., Kundu, M., Nasipuri, M.: A benchmark image database of isolated Bangla handwritten compound characters. Int. J. Doc. Anal. Recogn. 17(4), 413–431 (2014)CrossRefGoogle Scholar
  17. 17.
    Bag, S., Harit, G.: Skeletonizing character images using a modified medial axis-based strategy. Int. J. Pattern Recognit. Artif. Intell. 25(7), 1035–1054 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology (ISM) DhanbadDhanbadIndia

Personalised recommendations