Advertisement

Technology of Cortical Bone Trajectory on the Influence of Stability in Fixation of Burst Fracture of Thoracolumbar Spine: A Finite Element Analysis

  • Jianping Wang
  • Juping GuEmail author
  • Jian Zhao
  • Xinsong Zhang
  • Liang Hua
  • Chunfeng Zhou
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 761)

Abstract

Objective: To study the biomechanical stability of a new screw-setting technique, we used cortical bone trajectory (CBT) in injury vertebra relative to the traditional pedicle screw-setting technique.

Methods: We used thoracolumbar spine CT data of a healthy adult male volunteer and engineering data of internal fixation system of spine to simulate intact state, burst fracture state and combination of three kinds of internal fixation state of the spine: (1) 4 pedicle screws cross segment and 2 rods (P4); (2) 4 pedicle screws, 2 CBT screws at injured vertebrae and 2 rods (P4C2); (3) 6 pedicle screws and 2 rods (P6). Then we compared differences of the stability of the corresponding fixed system and stress distribution of fixation models of three groups above.

Results: The total deformation of all nodes of the fracture spine model of P4C2 was less than the fracture spine model node group of P4 and larger than the fracture spine model node group of P6 during normal weight status, rotation(right), bending forward, stretch and lateral bending(right) state. The equivalent stress of all nodes of internal fixation system of P4C2 was smaller than the fixation model node group of P4 and bigger than the fixation model node group of P6 during normal weight status, rotation(right), bending forward, stretch and lateral bending(right) state.

Conclusion: CBT technology for injured vertebra fixation could provide more stability of the vertebral body and reduce stress concentration of internal fixation system compared to the traditional P4 fixation.

Keywords

Burst fracture Thracolumbar spine Cortical bone trajectory Pedicle screw Biomechanics Injured level fixation 

Notes

Acknowledgment

The work was supported by National Natural Science Foundation of China (61273024 and 61673226).

References

  1. 1.
    Woodall Jr., J.W.: Evidence for the treatment of thoracolumbar burst fractures. Curr. Orthop. Pract. 23(3), 188–192 (2012)CrossRefGoogle Scholar
  2. 2.
    Canbek, U., Karapinar, L.: Posterior fixation of thoracolumbar burst fractures: Is it possible to protect one segment in the lumbar region? Eur. J. Orthop. Surg. Traumatol. 24(4), 459–465 (2014)CrossRefGoogle Scholar
  3. 3.
    Gaines Jr., R.W.: The use of pedicle-screw internal fixation for the operative treatment of spinal disorders. Bone Joint Surg. 82-A(10), 1458–1476 (2000)CrossRefGoogle Scholar
  4. 4.
    Ruf, M., Harms, J.: Pedicle screws in 1-and 2-year-old children: technique, complications, and effect on further growth. Spine 27(21), 460–466 (2002)CrossRefGoogle Scholar
  5. 5.
    McCormack, T., Karaikovic, E., Gaines, R.W.: The load-sharing classification of spine fractures. Spine 19(15), 1741–1744 (1994)CrossRefGoogle Scholar
  6. 6.
    Gelb, D., Ludwig, S.: Successful treatment of thoracolumbar fractures with short-segment pedicle instrumentation. J Spinal Disord. Tech. 23, 293–301 (2010)CrossRefGoogle Scholar
  7. 7.
    Esses, S.I., Sachs, B.L., Dreyzin, V.: Complications associated with the technique of pedicle screw fixation. A selected survey of ABS members. Spine 18(15), 2231–2238 (1993)CrossRefGoogle Scholar
  8. 8.
    Saita, K., Hoshino, Y., Kikkawa, I., et al.: Postlerior spinal shortening for paraplegia after vertebral collapse cause by osteopomsi. Spine 25(21), 2832–2835 (2000)CrossRefGoogle Scholar
  9. 9.
    Santoni, B.G., Hynes, R.A., McGilvray, K.C., et al.: Cortical bone trajectory for lumbar pedicle screws. Spine J. 9, 366–373 (2009)CrossRefGoogle Scholar
  10. 10.
    Matsukawa, K., Yato, Y.: Morphometric measurement of cortical bone trajectory for lumbar pedicle screw insertion using computed tomography. J. Spinal Disord. Tech. 26(6), 248–253 (2013)CrossRefGoogle Scholar
  11. 11.
    Shih, S.-L., Chen, C.-S., Lin, H.-M., et al.: Effect of spacer diameter of the dynesys dynamic stabilization system on the biomechanics of the lumbar spine: a finite element analysis. J. Spinal Disord. Tech. 25(5), 140–149 (2012)CrossRefGoogle Scholar
  12. 12.
    Ozgur, V., Mehmet, S.E., Levent, A., et al.: Biomechanical Evaluation of Syndesmotic Screw Position: a finite element analysis. J. Orthop. Trauma 28(4), 210–215 (2014)CrossRefGoogle Scholar
  13. 13.
    Markolf, K.L.: Deformation of the thoracolumbar intervertebral joints in response to external load: a biomechanical study using autopsy material. J. Bone Join Surg. Am. 54(3), 511–533 (1972)CrossRefGoogle Scholar
  14. 14.
    Wood, K.B., Li, W.: Management of thoracolumbar spine fractures. Spine J. 14, 145–164 (2014)CrossRefGoogle Scholar
  15. 15.
    Perez-Orribo, L., Kalb, S., et al.: Biomechanics of lumbar cortical screw-rod fixation versus pedicle screw-rod fixation with and without interbody support. Spine 38(8), 635–641 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Jianping Wang
    • 1
  • Juping Gu
    • 1
    Email author
  • Jian Zhao
    • 2
  • Xinsong Zhang
    • 1
  • Liang Hua
    • 1
  • Chunfeng Zhou
    • 3
  1. 1.College of Electrical EngineeringNantong UniversityNantongChina
  2. 2.Department of OrthopaedicsChangzheng Hospital, Second Military Medical UniversityShanghaiChina
  3. 3.Department of OrthopaedicsRich Hospital of NantongNantongChina

Personalised recommendations