Periodic Intensification Principles and Methods of High-solid and Multi-phase Bioprocess

  • Hongzhang ChenEmail author
Part of the Green Chemistry and Sustainable Technology book series (GCST)


High-solid and multi-phase bioprocess is an interactive process among microorganism and environmental factors. Various environmental stimulations will affect microbial growth and metabolism in high-solid and multi-phase bioprocess. In this chapter, periodic intensification principle is proposed based on microbial physiology and biochemistry properties. Novel periodic intensification methods such as periodic peristalsis and gas double dynamic (GDD) were used in high-solid and multi-phase bioprocess to improve microbial performance, and mechanisms of the two intensification methods are systematically analyzed. Based on the analysis, it is concluded that periodic peristalsis and gas double dynamic can effectively intensify microbial growth and target products formation.


Periodic intensification Periodic peristalsis Gas double dynamic 


  1. 1.
    Liang JX, Weng SH, Chen JH (2006) Chaos theory and modernlization of chinese medical. J Guangzhou Univ Tradit Chin Med 23(3):186–189Google Scholar
  2. 2.
    Ghosh A, Greenberg ME (1995) Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268(5208):239CrossRefPubMedGoogle Scholar
  3. 3.
    Berridge MJ, Taylor C (1988) Inositol trisphosphate and calcium signaling. In: Cold spring harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press, pp 927–933CrossRefPubMedGoogle Scholar
  4. 4.
    Thomas A, Bird G, Hajnoczky G, Robb-Gaspers L, Putney J (1996) Spatial and temporal aspects of cellular calcium signaling. FASEB J 10(13):1505–1517CrossRefPubMedGoogle Scholar
  5. 5.
    Chance B, Hess B, Betz A (1964) DPNH oscillations in a cell-free extract of S. carlsbergensis. Biochem Biophy Res Co 16 (2):182–187CrossRefPubMedGoogle Scholar
  6. 6.
    Li H, Hou Z, Xin H (2005) Internal noise stochastic resonance for intracellular calcium oscillations in a cell system. Phys Rev E 71(6):061916CrossRefGoogle Scholar
  7. 7.
    Wang J, Liu ZH, Cai RX et al (2006) Current development of analytical methods based on biological spatiotemporal oscillators. Process Chem 18 (1)Google Scholar
  8. 8.
    Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems, vol 191977. Wiley, New YorkGoogle Scholar
  9. 9.
    Li RS (1986) None-equilibrium thermodynamics and dissipative structure. Tsinghua University PressGoogle Scholar
  10. 10.
    Sun KL, Cai GY (1999) The effect of alternative stress on the thermodynamical properties of cultured tobaccco cells. Acta Biochemica et Biophysica 15(3):578–583Google Scholar
  11. 11.
    Ingber DE, Folkman J (1989) Tension and compression as basic determinants of cell form and function: utilization of a cellular tensegrity mechanism. In: Cell shape: determinants, regulation, and regulatory role, pp 3–31CrossRefGoogle Scholar
  12. 12.
    Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 59(1):575–599CrossRefPubMedGoogle Scholar
  13. 13.
    Li ZH (1993) A new principle of bioreactor design. In: Proceedings of the 5th National Conference on BiochemistryGoogle Scholar
  14. 14.
    Singer S, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. In: Day SB, Good RA (eds) Membranes and viruses in immunopathology, pp 7–47CrossRefGoogle Scholar
  15. 15.
    Yin JZ, Chen SJ, Jia LY et al (2009) Research on scale up factors and methods. Chem Equip Technol 30(1):22–27Google Scholar
  16. 16.
    Wang ZH (1982) History of microbial industry in China. Chin J Sci Techn Hist 4:98–98Google Scholar
  17. 17.
    Chen HZ, Li ZH (1998) Bioreactor engineering advances. Biotechnology 18(4):46–49Google Scholar
  18. 18.
    Li HQ (2008) Study on cellulase solid-state fermentation with gas periodic stimulationGoogle Scholar
  19. 19.
    Chen PS ( 1979) History of microbial industry in China. Light Industry PressGoogle Scholar
  20. 20.
    Dai CY, Wang BC (2003) Development of high-speed rectangle burner used in baked aluminum reduction cells. J Chongqing Univ (Nat Sci) 26 (2):15–17Google Scholar
  21. 21.
    Gao DW, Gao WH (1999) effect of linear ultrasonic wave irradiation on the growth of SaccharomYCES cerevisiae. J South China Univ Technol (Nat Sci ) 27(12):34–37Google Scholar
  22. 22.
    Fu XG, Chen HZ, Li HQ et al (2006) Study of microorganism protein and mechanism in solid state fermentation with periodical dynamic changes of air. J Bejing Univ Chem Technol (Nat Sci)Google Scholar
  23. 23.
    Wang JY, Zhu SG, Xu CF (2002) Biochemistry. Higher Education Press, BeijingGoogle Scholar
  24. 24.
    Li WQ, Chen HJ, Chen CH et al (2007) The influence of Key enzyme in glucose metabolism on lincomycin biosyhthesis. Pharm Biotechnol 14(6):424–428Google Scholar
  25. 25.
    Spano G, Massa S (2006) Environmental stress response in wine lactic acid bacteria: beyond Bacillus subtilis. Crit Rev Microbiol 32(2):77–86CrossRefPubMedGoogle Scholar
  26. 26.
    Kültz D (2005) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67:225–257CrossRefPubMedGoogle Scholar
  27. 27.
    Serrano R (1988) Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. Biochemica et Biophysica Acta (BBA)-Rev Biomembr 947 (1):1–28CrossRefGoogle Scholar
  28. 28.
    Portillo F (2000) Regulation of plasma membrane H + -ATPase in fungi and plants. Biochimica et Biophysica Acta (BBA) Rev Biomembr 1469 (1):31–42CrossRefGoogle Scholar
  29. 29.
    Piper P, Talreja K, Panaretou B et al (1994) Induction of major heat-shock proteins of Saccharomyces cerevisiae, including plasma membrane Hsp30, by ethanol levels above a critical threshold. Microbiology 140(11):3031–3038CrossRefPubMedGoogle Scholar
  30. 30.
    Du CY, Liu M, Rao Z et al (2005) Effect of alternative aeration on key enzymes and coenzyme in 1,3-propanediol prodction by Klebsiella pneumoniae. Chin J Process Eng 5(5):540–544Google Scholar
  31. 31.
    Xie MD, Liu DH, Zhang Y et al (2000) Enhancement of fermentative gltcerol yield with heat shock treatment. Chin J Biotechnol 16(3):384–386Google Scholar
  32. 32.
    Saucedo-Castañeda G, Trejo-Hernández M, Lonsane B et al (1994) On-line automated monitoring and control systems for CO2 and O2 in aerobic and anaerobic solid-state fermentations. Process Biochem 29(1):13–24CrossRefGoogle Scholar
  33. 33.
    Peng XW (2008) Production of single cell oils from steam-exploded straw in solid-stated fermentation and pyrolysis of fermented mass for producing biodiesel. university of chinese academy of sciences. Institute of Process Engineering, Chinese Academy of SciencesGoogle Scholar
  34. 34.
    Zeng W (2008) Solid state fermentation of feruloyl esterase and synergistic effect with cellulase. Institute of Process Engineering, Chinese Academy of SciencesGoogle Scholar
  35. 35.
    Chen J, Liu LM, Du GC (2009) Optimazation principle and technology of fermentation process. Chemical Industry Press, BeijingGoogle Scholar
  36. 36.
    Jia B, Jin ZH, Mei LH (2008) Influence of glucose feeding on pristinamycins fermentation process of Streptomyces pristinaespiralis. Chin J Antibiot 33(2):75–79Google Scholar
  37. 37.
    Zhao LG, Wang P, Ni H et al (2008) β-glucosidase production by Aspergillus niger with fed-batch fermentation. Ind Microb 38(6):13–16Google Scholar
  38. 38.
    Xie MY, Bie ZX (2007) Fermentation technologies. Chemical Industry Press, BeijingGoogle Scholar
  39. 39.
    Ming Y (1998) Optimization control of fermentation engineering. Jiangsu Science and Technology PressGoogle Scholar
  40. 40.
    Shi TH, Liu XL, Liu H et al (2005) Effect factors and control of microbial fermentation. Poult Sci 2:45–48Google Scholar
  41. 41.
    Tao YG, Tang B, Huang W, Xu XL (2003) The environmental conditions of producing Bacilus thr.ingiensis in the pressure pulse bioreactor. J Huazhong Agric Univ 22 (5):466–468Google Scholar
  42. 42.
    Tao YG, Xiang SG, Zhou DC (2003) Study on solid-state fermentation conditions of producing acid proteinase feed in pressure pulsation. Cereal Feed Ind 3:23–24Google Scholar
  43. 43.
    Chen HZ, Qiu WH (2007) The crucial problems and recent advance on producing fel alcohol by fermentation of straw. Process Chem 19(7):1116–1121Google Scholar
  44. 44.
    Xu FJ, Chen HZ, Li ZH (2002) Gas double dynamic solid state fermentation of cellase. Environ Sci 23(3):53–58Google Scholar
  45. 45.
    Xu FJ, Chen HZ, Shao MJ et al (2002) Scanning electron microscopic observation on solid-state Fermentation of Cellulase. J Chin Electron Microsc Soc 21(1):25–29Google Scholar
  46. 46.
    Li ZH, Chen HZ (2001) Key technology of ecological Industry for straw. Trans CSAE 17(2):1–4Google Scholar
  47. 47.
    Xu FJ, Chen HZ, Li ZH (2002) Effect of periodically dynamic changes of air on cellulase production in solid-state fermentation. Enzyme Microb Tech 30(1):45–48CrossRefGoogle Scholar
  48. 48.
    Xu XL (2003) Studies on the technology for industrial production of beauveria. J Zhejiang Univ Technol 31(5):520–523Google Scholar
  49. 49.
    Zhang X, Qiu WH, Chen HZ (2012) Enhancing the hydrolysis and acidification of steam-exploded cornstalks by intermittent pH adjustment with an enriched microbial community. Biores Technol 123:30–35CrossRefGoogle Scholar
  50. 50.
    Lv XF, Y HL, Wang W (2001) The application of ultrasonic in fermentation engineering. Lett Biotechnol 12 (4):310–313Google Scholar
  51. 51.
    Lin Y (1997) Effect of magnetic field on the cells growth and inulinase biosynthesis of Kluyveromyces fragili. South China Univ TechnolGoogle Scholar
  52. 52.
    Li GJ, He X, Gao DW (2000) Study of forced ripening fermented bean curd with high frequence electric field. China Brewing 19(6):13–14Google Scholar
  53. 53.
    Doremus MG, Linden JC, Moreira AR (1985) Agitation and pressure effects on acetone-butanol fermentation. Biotech Bioeng 27(6):852–860CrossRefGoogle Scholar
  54. 54.
    Lamed R, Lobos J, Su T (1988) Effects of stirring and hydrogen on fermentation products of Clostridium thermocellum. Appl Environ Microb 54(5):1216–1221Google Scholar
  55. 55.
    Qureshi N, Singh V, Liu S et al (2014) Process integration for simultaneous saccharification, fermentation, and recovery (SSFR): production of butanol from corn stover using Clostridium beijerinckii P260. Bioresour Technol 154:222–228CrossRefPubMedGoogle Scholar
  56. 56.
    Han PP, Yuan YJ (2009) Metabolic profiling as a tool for understanding defense response of Taxus cuspidata cells to shear stress. Biotechnol Progr 25(5):1244–1253CrossRefGoogle Scholar
  57. 57.
    Xia ML, Wang L, Yang ZX et al (2015) Periodic-peristole agitation for process enhancement of butanol fermentation. Biotechnol Biofuels 8(1):1CrossRefGoogle Scholar
  58. 58.
    Lee J, Yun H, Feist AM et al (2008) Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. Appl Microb and Biotechnol 80(5):849–862CrossRefGoogle Scholar
  59. 59.
    Janssen H, Grimmler C, Ehrenreich A et al (2012) A transcriptional study of acidogenic chemostat cells of Clostridium acetobutylicum—solvent stress caused by a transient n-butanol pulse. J Biotechnol 161(3):354–365CrossRefPubMedGoogle Scholar
  60. 60.
    Castro J, Razmilic V, Gerdtzen Z (2013) Genome based metabolic flux analysis of Ethanoligenens harbinense for enhanced hydrogen production. Int J Hydrogen Energy 38(3):1297–1306CrossRefGoogle Scholar
  61. 61.
    Ezeji T, Milne C, Price ND et al (2010) Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. App Microbiol Biotechnol 85(6):1697–1712CrossRefGoogle Scholar
  62. 62.
    Lee JY, Jang YS, Lee J et al (2009) Metabolic engineering of Clostridium acetobutylicum M5 for highly selective butanol production. Biotechnol J 4(10):1432–1440CrossRefPubMedGoogle Scholar
  63. 63.
    Alsaker KV, Paredes C, Papoutsakis ET (2010) Metabolite stress and tolerance in the production of biofuels and chemicals: gene‐expression‐based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Biotechnol Bioeng 105 (6):1131–1147Google Scholar
  64. 64.
    Lütke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotech 22(5):634–647CrossRefPubMedGoogle Scholar
  65. 65.
    Cai G, Jin B, Saint C et al (2010) Metabolic flux analysis of hydrogen production network by Clostridium butyricum W5: effect of pH and glucose concentrations. Int J Hydrogen Energy 35(13):6681–6690CrossRefGoogle Scholar
  66. 66.
    Amador-Noguez D, Feng XJ, Fan J et al (2010) Systems-level metabolic flux profiling elucidates a complete, bifurcated tricarboxylic acid cycle in Clostridium acetobutylicum. J Bacteriol 192(17):4452–4461CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Korneli C, Bolten CJ, Godard T et al (2012) Debottlenecking recombinant protein production in Bacillus megatherium under large-scale conditions—targeted precursor feeding designed from metabolomics. Biotechnol Bioeng 109(6):1538–1550CrossRefPubMedGoogle Scholar
  68. 68.
    Jones SW, Paredes CJ, Tracy B et al (2008) The transcriptional program underlying the physiology of clostridial sporulation. Genome Biol 9(7):1CrossRefGoogle Scholar
  69. 69.
    Alsaker KV, Papoutsakis ET (2005) Transcriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum. J Bacteriol 187(20):7103–7118CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Han PP, Yuan YJ (2009) Lipidomic analysis reveals activation of phospholipid signaling in mechanotransduction of Taxus cuspidata cells in response to shear stress. FASEB J 23(2):623–630CrossRefPubMedGoogle Scholar
  71. 71.
    Chapman AG, Fall L, Atkinson DE (1971) Adenylate energy charge in Escherichia coli during growth and starvation. J Bacteriol 108(3):1072–1086PubMedPubMedCentralGoogle Scholar
  72. 72.
    Ball W, Atkinson DE (1975) Adenylate energy charge in Saccharomyces cerevisiae during starvation. J Bacteriol 121(3):975–982PubMedPubMedCentralGoogle Scholar
  73. 73.
    Zhao S, Huang D, Qi H et al (2013) Comparative metabolic profiling-based improvement of rapamycin production by Streptomyces hygroscopicus. App Microbiol Biotechnol 97(12):5329–5341CrossRefGoogle Scholar
  74. 74.
    Bhagyalakshmi A, Berthiaume F, Reich K et al (1992) Fluid shear stress stimulates membrane phospholipid metabolism in cultured human endothelial cells. J Vasc Res 29(6):443–449CrossRefPubMedGoogle Scholar
  75. 75.
    Zhao Y, Hindorff LA, Chuang A, Monroe-Augustus M et al (2003) Expression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in Clostridium acetobutylicum ATCC 824. Appl Environ Microb 69(5):2831–2841CrossRefGoogle Scholar
  76. 76.
    Chen HZ, Li ZH (2001) Microbial solid fermentation reactor. Chem Technol Mark 24(2):25–27Google Scholar
  77. 77.
    Zhao ZM, Wang L, Chen HZ (2015) Variable pressure pulsation frequency optimization in gas double-dynamic solid-state fermentation (GDSSF) based on heat balance model. Process Biochem 50(2):157–164CrossRefGoogle Scholar
  78. 78.
    Chen HZ, Zhao ZM, Li HQ (2014) The effect of gas double-dynamic on mass distribution in solid-state fermentation. Enzyme Microb Technol 58–59(9):14–21CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Process EngineeringChinese Academy of SciencesBeijingChina

Personalised recommendations