Advertisement

Intensify Bioreaction Accessibility and Feedstock Refinery Process

  • Hongzhang Chen
Chapter
Part of the Green Chemistry and Sustainable Technology book series (GCST)

Abstract

Biomass is a kind of material featured by diversity, multicomponent, and multi-scale. Various flow, complex flow characteristics, and coupling effects between solid matrix and flow movement make it being the limitation in solving mass transfer. In this chapter, based on analysis of chemical and physical characteristics of biomass, the principle and methods of enhancing the accessibility of solid substrate in high-solid and multi-phase bioprocesses are introduced. The novel process and the steam explosion refining platform for the utilization of multicomponents of solid substrate have been established, which are based on the relationship of characteristics of solid substrate and enhanced process of accessibility of the biological reaction.

Keywords

Coupling effects Accessibility Steam explosion 

References

  1. 1.
    Chen HZ, Sui WJ (2015) Problems of biomass refining engineering: anti-seepage. Biotechnol Bus 3:69–76Google Scholar
  2. 2.
    Cho HM, Gross AS, Chu JW (2011) Dissecting force interactions in cellulose deconstruction reveals the required solvent versatility for overcoming biomass recalcitrance. J Am Chem Soc 133:14033–14041PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Himmel ME, Ding SY, Johnson DK et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Pu YQ, Hu F, Huang F et al (2013) Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechol Biofuels 6:1–13CrossRefGoogle Scholar
  5. 5.
    Ding SY, Liu YS, Zeng YN et al (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility. Science 338:1055–1060PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Meng X, Ragauskas AJ (2014) Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr Opin Biotech 27:150–158PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Liu L, Qian C, Jiang L et al (2014) Direct three-dimensional characterization and multiscale visualization of weat straw deconstruction by white rot fungus. Environ Sci Techol 48:9819–9825CrossRefGoogle Scholar
  8. 8.
    Chan CH, Yusoff R, Ngoh GC (2014) Modeling and kinetics study of conventional and assisted batch solvent extraction. Chem Eng Res Des 92:1169–1186CrossRefGoogle Scholar
  9. 9.
    Zhao JY, Chen HZ (2013) Correlation of porous structure, mass transfer and enzymatic hydrolysis of steam-exploded corn stover. Chem Eng Sci 104:1036–1044CrossRefGoogle Scholar
  10. 10.
    Chundawat SPS, Donohoe BS, da Costa Sousa L et al (2011) Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energ Environ Sci 4:973–984CrossRefGoogle Scholar
  11. 11.
    Ciesielski PN, Matthews JF, Tucker M et al (2013) 3D electron tomography of pretreated biomass informs atomic modeling of cellulose microfibrils. ACS Nano 7:8011–8019PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Yu MG, Xu P, Zhou MQ et al (2014) Fractal porous media transport. Science Press, BeijingGoogle Scholar
  13. 13.
    Zhao YS (2010) Multi field coupling of porous media and its engineering response. Science Press, BeijingGoogle Scholar
  14. 14.
    Alvira P, Tomás-Pejó Ballesteros M et al (2010) Pretreatment technolo1es for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:485l–486lCrossRefGoogle Scholar
  15. 15.
    Chen HZ, Li GH, Li HQ (2014) Novel pretreatment of sream explosion associated with ammonium chloride preimpregnation. Bioresour Technol 153:154–159PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Deindoerfer FH (1957) Calculation of heat sterilization times for fermentation media. Appl Microbiol 5(4):221PubMedPubMedCentralGoogle Scholar
  17. 17.
    Liu XL, Zhou WR, Wu YH et al (2013) Effect of sterilization process on surface characteristics and biocompatibility of pure Mg and MgCa alloys. Mat Sci Eng C 33(7):4144–4154CrossRefGoogle Scholar
  18. 18.
    Pandey A (2003) Solid-state fermentation. Biochem Eng J 13(2):81–84CrossRefGoogle Scholar
  19. 19.
    Li GH, Chen HZ (2014) Synergistic mechanism of steam explosion combined with fungal treatment by Phellinus baumii for the pretreatment of corn stalk. Biomass Bioenerg 67(11):1–7CrossRefGoogle Scholar
  20. 20.
    Liu L, Zhuang DF, Jiang D et al (2013) Assessment of the biomass energy potentials and environmental benefits of Jatropha curcas L. in Southwest China. Biomass Bioenerg 56(5):342–350CrossRefGoogle Scholar
  21. 21.
    Zhang RX, Xue G, Zhang CJ et al (2007) A device for discharging of spherical digester used in pulping. China Patent 200720079330. XGoogle Scholar
  22. 22.
    Lund D (1988) Effects of heat processing on nutrients. In: Karmas E, Harris RS (eds) Nutritional evaluation of food processing. Springer, Netherlands, pp 319–354CrossRefGoogle Scholar
  23. 23.
    Mann A, Kiefer M, Leuenberger H (2001) Thermal sterilization of heat-sensitive products using high-temperature short-time sterilization. J Pharm Sci 90(3):275–287PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Mei LH, Yao SJ, Lin DQ (1999) Biochemical production and processes. Science Press, BeijingGoogle Scholar
  25. 25.
    Kjellstrand P, Martinson E, Wieslander A (1995) Development of toxic degradation products during heat sterilization of glucose-containing fluids for peritoneal dialysis: influence of time and temperature. Periton Dial Int 15(1):26–32Google Scholar
  26. 26.
    Chen HZ, Liu LY (2007) Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction. Bioresour Technol 98(3):666–676CrossRefGoogle Scholar
  27. 27.
    Liu ZH, Qin L, Jin MJ (2013) Evaluation of storage methods for the conversion of corn stover biomass to sugars based on steam explosion pretreatment. Bioresour Technol 132:5–15PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Chen HZ, Li HQ, Liu LY (2011) The inhomogeneity of corn stover and its effects on bioconversion. Biomass Bioenerg 35(5):1940–1945CrossRefGoogle Scholar
  29. 29.
    Fenske JJ, Griffin DA, Penner MH (1998) Comparison of aromatic monomers in lignocellulosic biomass prehydrolysates. J Ind Microbiol Biotechnol 20(6):364–368CrossRefGoogle Scholar
  30. 30.
    Du B, Sharma LN, Becker C et al (2010) Effect of varying feedstock–pretreatment chemistry combinations on the formation and accumulation of potentially inhibitory degradation products in biomass hydrolysates. Biotechnol Bioeng 107(3):430–440PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Heitz M, Capekmenard E, Koeberle PG et al (1991) Fractionation of Populus tremuloides at the pilot plant scale: optimization of steam pretreatment conditions using the STAKE II technology. Bioresour Technol 35(1):23–32CrossRefGoogle Scholar
  32. 32.
    Iroba KL, Tabil LG, Sokhansanj S et al (2014) Pretreatment and fractionation of barley straw using steam explosion at low severity factor. Biomass Bioenerg 66(7):286–300CrossRefGoogle Scholar
  33. 33.
    Overend RP, Chornet E, Gascoigne JA (1987) Fractionation of lignocellulosics by steam-aqueous pretreatments. Philos T R Soc A 321(1561):523–536CrossRefGoogle Scholar
  34. 34.
    Zhu SM, Naim F, Marcotte M et al (2008) High-pressure destruction kinetics of Clostridium sporogenes spores in ground beef at elevated temperatures. Int J Food Microbiol 126(1–2):86–92PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Rajan S, Pandrangi S, Balasubramaniam VM et al (2006) Inactivation of Bacillus stearothermophilus spores in egg patties by pressure-assisted thermal processing. LWT-Food Sci Technol 39(8):844–851CrossRefGoogle Scholar
  36. 36.
    Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):25–33CrossRefGoogle Scholar
  37. 37.
    Wang L, Chen HZ (2011) Increased fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production by removal of fermentation inhibitors. Process Biochem 46(2):604–607CrossRefGoogle Scholar
  38. 38.
    Negro MJ, Alvarez C, Ballesteros I et al (2014) Ethanol production from glucose and xylose obtained from steam-exploded water-extracted olive tree pruning using phosphoric acid as catalyst. Bioresour Technol 153(153C):101–107PubMedCrossRefGoogle Scholar
  39. 39.
    Wang LP, Shen QR, Yu GH et al (2012) Fate of biopolymers during rapeseed meal and wheat bran composting as studied by two-dimensional correlation spectroscopy in combination with multiple fluorescence labeling techniques. Bioresour Technol 105(2):88–94PubMedCrossRefGoogle Scholar
  40. 40.
    Nada AAM, Yousef MA, Shaffei KA et al (1998) Infrared spectroscopy of some treated lignins. Polym Degrad Stabil 62(1):157–163CrossRefGoogle Scholar
  41. 41.
    Wang GH, Chen HZ (2014) Carbohydrate elimination of alkaline-extracted lignin liquor by steam explosion and its methylolation for substitution of phenolic adhesive. Ind Crop Prod 53(53):93–101CrossRefGoogle Scholar
  42. 42.
    Fu XM, Zhao SM, Liang YX et al (2010) The optimization of solid-state fermentation process for high-yield spore production of a feeding bacillus subtilis. Feed Ind 22:014Google Scholar
  43. 43.
    Joshi S, Bharucha C, Desai AJ (2008) Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B. Bioresour Technol 99(11):4603–4608PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Langan P, Petridis L, O’Neill HM et al (2014) Common processes drive the thermochemical pretreatment of lignocellulosic biomass. Green Chem 16(1):63–68CrossRefGoogle Scholar
  45. 45.
    Pei JX, Ping QW, Tang AM et al (2012) Chemistry of plant fiber. China Light Industry Press, BeijingGoogle Scholar
  46. 46.
    Chen HZ (2013) Steam explosion technology and biomass refinery. Chemical Industry Press, BeijingGoogle Scholar
  47. 47.
    Chen HZ, Qiu WH, Wang L (2014) Selective separation of biomass raw materials-functional economic utilization. Eng Sci 16(3):27–36Google Scholar
  48. 48.
    Chen HZ, Liu ZH (2014) Multilevel composition fractionation process for high-value utilization of wheat straw cellulose. Biotechnol Biofuels 7(1):137PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Chen HZ, Liu ZH (2015) Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products. Biotechnol J 10(6):866–885PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Zhang YZ, Fu XG, Chen HZ (2012) Pretreatment based on two-step steam explosion combined with an intermediate separation of fiber cells-optimization of fermentation of corn straw hydrolysates. Bioresour Technol 121(2):100–104PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Alvira P, Tomás-Pejó E, Ballesteros M et al (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Chen HZ, Liu ZH (2014) Multilevel composition fractionation process for highvalue utilization of wheat straw cellulose. Biotechnol Biofuels 7(1):137PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Liu ZH, Chen HZ (2015) Xylose production from corn stover biomass by steam explosion combined with enzymatic digestibility. Bioresour Technol 193(OCT):345–356PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Sui WJ, Chen HZ (2015) Study on loading coefficient in steam explosion process of corn stalk. Bioresour Technol 179C:534–542CrossRefGoogle Scholar
  55. 55.
    Selig MJ, Thygesen LG, Felby C (2014) Correlating the ability of lignocellulosic polymers to constrain water with the potential to inhibit cellulose saccharification. Biotechnol Biofuels 7(1):159PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Selig MJ, Hsieh CWC, Thygesen LG et al (2012) Considering water availability and the effect of solute concentration on high solids saccharification of lignocellulosic biomass. Biotechnol Prog 28(6):1478–1490PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Berry SL, Roderick ML (2005) Plant-water relations and the fibre saturation point. New Phytol 168(1):25–37PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Sun BH, Wang MX (2012) Research on the moisture state and mobility in wood during microwave drying by LF-NMR. J Inner Mong Agric Univ 33:205–210Google Scholar
  59. 59.
    Browning BL (1963) The chemistry of wood. Interscience, New York, USA, pp 405–439Google Scholar
  60. 60.
    Stamm AJ (1964) Wood and cellulose science. In: Wood and cellulose science. Ronald, New YorkGoogle Scholar
  61. 61.
    Engelund ET, Thygesen LG, Svensson S et al (2013) A critical discussion of the physics of wood-water interactions. Wood Sci Technol 47(1):141–161CrossRefGoogle Scholar
  62. 62.
    Tsuchida JE, Rezende CA, de Oliveira-Silva R et al (2014) Nuclear magnetic resonance investigation of water accessibility in cellulose of pretreated sugarcane bagasse. Biotechnol Biofuels 7(1):127PubMedPubMedCentralGoogle Scholar
  63. 63.
    Panshin AJ, Zeeuw CD (1980) Text book of wood technology. Mc Graw-Hill Book Co, New YorkGoogle Scholar
  64. 64.
    Christensen GN, Kelsey KE (1965) The sorption of water vapor by the constituents of wood. Forest Products LaboratoryGoogle Scholar
  65. 65.
    Roderick ML, Berry SL (2001) Linking wood density with tree growth and environment: a theoretical analysis based on the motion of water. New Phytol 149(3):473–485CrossRefGoogle Scholar
  66. 66.
    Sui WJ, Chen HZ (2014) Multi-stage energy analysis of steam explosion process. Chem Eng Sci 116(40):254–262CrossRefGoogle Scholar
  67. 67.
    Brownell HH, Yu EKC, Saddler JN (1986) Steam explosion pretreatment of wood: Effect of chip size, acid, moisture content and pressure drop. Biotechnol Bioeng 28(6):792–801PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Ferreira LC, Nilsen PJ, Fdz-Polanco F et al (2014) Biomethane potential of wheat straw: influence of particle size, water impregnation and thermal hydrolysis. Chem Eng J 242(8):254–259CrossRefGoogle Scholar
  69. 69.
    Cullis IF, Saddler JN, Mansfield SD (2004) Effect of initial moisture content and chip size on the bioconversion efficiency of softwood lignocellulosics. Biotechnol Bioeng 85(4):413–421PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Kumar L, Chandra R, Saddler J (2011) Influence of steam pretreatment severity on post-treatments used to enhance the enzymatic hydrolysis of pretreated softwoods at low enzyme loadings. Biotechnol Bioeng 108(10):2300–2311PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    DeMartini JD, Pattathil S, Miller JS et al (2013) Investigating plant cell wall components that affect biomass recalcitrance in poplar and switchgrass. Energy Environ Sci 6(3):898–909CrossRefGoogle Scholar
  72. 72.
    Vivekanand V, Olsen EF, Eijsink VGH et al (2013) Effect of different steam explosion conditions on methane potential and enzymatic saccharification of birch. Bioresour Technol 127(1):343–349PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Ballesteros I, Oliva JM, Navarro AA et al (2000) Effect of chip size on steam explosion pretreatment of softwood. Appl Biochem Biotech 84–86(1):97–110CrossRefGoogle Scholar
  74. 74.
    Ballesteros I, Oliva JM, Negro MJ et al (2002) Enzymatic hydrolysis of steam-exploded herbaceous agricultural waste (Brassica carinata) at different particule sizes. Process Biochem 38(2):187–192CrossRefGoogle Scholar
  75. 75.
    Yu ZD, Zhang BL, Yu FQ et al (2012) A real steam explosion: the requirement of steam explosion pretreatment. Bioresour Technol 121(121):335–341PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Wang BG, Liu SY, Huang WG (2005) Gas dynamics. Beijing Institute of Technology Press, BeijingGoogle Scholar
  77. 77.
    Monavari S, Galbe M, Zacchi G (2009) Impact of impregnation time and chip size on sugar yield in pretreatment of softwood for ethanol production. Bioresour Technol 100(24):6312–6316PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Foody P (1982) Steam explosion as a pretreatment for biomass conversion. Final Report to Midwest Research Institute. Solar Energy Division, Kansas CityGoogle Scholar
  79. 79.
    Macıas-Sánchez MD, Mantell C, Rodrıguez M et al (2005) Supercritical fluid extraction of carotenoids and chlorophyll a from Nannochloropsis gaditana. J Food Eng 66(2):245–251CrossRefGoogle Scholar
  80. 80.
    Ewanick S, Bura R (2011) The effect of biomass moisture content on bioethanol yield from steam pretreated switchgrass and sugarcane bagasse. Bioresour Technol 102(3):2651–2658PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Tan Z, Wang C, Yi Y et al (2014) Extraction and purification of chlorogenic acid from ramie (Boehmeria nivea L. Gaud) leaf using an ethanol/salt aqueous two-phase system. Sep Puri Technol 132(132):396–400CrossRefGoogle Scholar
  82. 82.
    Memon AA, Memon N, Bhanger MI et al (2010) Micelle-mediated extraction of chlorogenic acid from Morus laevigata W. leaves. Sep Puri Technol 76(2):179–183CrossRefGoogle Scholar
  83. 83.
    Karabegović IT, Stojičević SS, Veličković DT et al (2013) Optimization of microwave-assisted extraction and characterization of phenolic compounds in cherry laurel (Prunus laurocerasus) leaves. Sep Puri Technol 120:429–436CrossRefGoogle Scholar
  84. 84.
    Azmir J, Zaidul ISM, Rahman MM et al (2013) Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng 117(4):426–436CrossRefGoogle Scholar
  85. 85.
    Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15(10):7313–7352PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Guihua S, Quancheng Z (2008) Ultrasonic-assisted extraction of oxymatrine from Sophorae tonkinesis. Trans Chin Soc Agric Eng 24(3):291–294Google Scholar
  87. 87.
    Kerem Z, German-Shashoua H, Yarden O (2005) Microwave-assisted extraction of bioactive saponins from chickpea (Cicer arietinum L). J Sci Food Agric 85(3):406–412CrossRefGoogle Scholar
  88. 88.
    Xiao X, Song W, Wang J, Li G (2012) Microwave-assisted extraction performed in low temperature and in vacuo for the extraction of labile compounds in food samples. Anal Chim Acta 712(2):85–93PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Xu JK, Li MF, Sun RC (2015) Identifying the impact of ultrasound-assisted extraction on polysaccharides and natural antioxidants from Eucommia ulmoides Oliver. Process Biochem 50(3):473–481CrossRefGoogle Scholar
  90. 90.
    Liu CM, Zhu JJ, Zhang SQ et al (2005) Study on extraction total flavonoids in Epimedium koreanum using high pressure technology. China J Chin Mater Med 30(19):1511–1513Google Scholar
  91. 91.
    Pongnaravane B, Goto M, Sasaki M et al (2006) Extraction of anthraquinones from roots of Morinda citrifolia by pressurized hot water: Antioxidant activity of extracts. J Supercit Fluid 37(3):390–396CrossRefGoogle Scholar
  92. 92.
    Bakowska A, Kucharska AZ, Oszmiański J (2003) The effects of heating, UV irradiation, and storage on stability of the anthocyanin–polyphenol copigment complex. Food Chem 81(3):349–355CrossRefGoogle Scholar
  93. 93.
    Mussatto SI, Ballesteros LF, Martins S (2011) Extraction of antioxidant phenolic compounds from spent coffee grounds. Sep Puri Technol 83(1):173–179CrossRefGoogle Scholar
  94. 94.
    Xu JG, Hu QP, Liu Y (2012) Antioxidant and DNA-protective activities of chlorogenic acid isomers. J Agric Food Chem 60(46):11625–11630PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Ong KW, Hsu A, Tan BKH (2013) Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochem Pharmacol 85(9):1341–1351PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Wang Z, Clifford MN, Sharp P (2008) Analysis of chlorogenic acids in beverages prepared from Chinese health foods and investigation, in vitro, of effects on glucose absorption in cultured Caco-2 cells. Food Chem 108(1):369–373CrossRefGoogle Scholar
  97. 97.
    Chai X, Wang Y, Su Y et al (2012) A rapid ultra performance liquid chromatography–tandem mass spectrometric method for the qualitative and quantitative analysis of ten compounds in Eucommia ulmodies Oliv. J Pharm Biomed Anal 57(1):52–61PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Pinelo M, Zornoza B, Meyer AS (2008) Selective release of phenols from apple skin: mass transfer kinetics during solvent and enzyme-assisted extraction. Sep Puri Technol 63(3):620–627CrossRefGoogle Scholar
  99. 99.
    Bamba T, Fukusaki EI, Nakazawa Y et al (2002) In-situ chemical analyses of trans-polyisoprene by histochemical staining and Fourier transform infrared microspectroscopy in a rubber-producing plant, Eucommia ulmoides Oliver. Planta 215(6):934–939PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Sun Z, Li F, Du H et al (2013) A novel silvicultural model for increasing biopolymer production from Eucommia ulmoides Oliver trees. Ind Crop Prod 42(1):216–222CrossRefGoogle Scholar
  101. 101.
    Kurosumi A, Sasaki C, Kumada K (2007) Novel extraction method of antioxidant compounds from Sasa palmata (Bean) Nakai using steam explosion. Process Biochem 42(10):1449–1453CrossRefGoogle Scholar
  102. 102.
    Chen G, Chen H (2011) Extraction and deglycosylation of flavonoids from sumac fruits using steam explosion. Food Chem 126(4):1934–1938PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Yuan YT, Chen HZ (2006) Application of steam explosion in ephedrine extraction. J Chin Pharm Univ 36(5):414–416Google Scholar
  104. 104.
    Gong L, Huang L, Zhang Y (2012) Effect of steam explosion treatment on barley bran phenolic compounds and antioxidant capacity. J Arg Food Chem 60(29):7177–7184CrossRefGoogle Scholar
  105. 105.
    Pavlović MD, Buntić AV, Šiler-Marinković SS (2013) Ethanol influenced fast microwave-assisted extraction for natural antioxidants obtaining from spent filter coffee. Sep Purif Technol 118(6):505–510Google Scholar
  106. 106.
    Soria AC, Villamiel M (2010) Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends Food Sci Technol 21(7):323–331CrossRefGoogle Scholar
  107. 107.
    Zhang YZ, Chen HZ (2012) Multiscale modeling of biomass pretreatment for optimization of steam explosion conditions. Chem Eng Sci 75(25):177–182CrossRefGoogle Scholar
  108. 108.
    Sui W, Chen H (2014) Extraction enhancing mechanism of steam exploded Radix Astragali. Process Biochem 49(12):2181–2190CrossRefGoogle Scholar
  109. 109.
    Chatain D, Rabkin E, Derenne J et al (2001) Role of the solid/liquid interface faceting in rapid penetration of a liquid phase along grain boundaries. Acta Mater 49(7):1123–1128CrossRefGoogle Scholar
  110. 110.
    Li H, Chen H (2008) Detoxification of steam-exploded corn straw produced by an industrial-scale reactor. Process Biochem 43(12):1447–1451CrossRefGoogle Scholar
  111. 111.
    Wrolstad RE, Putnam TP, Varseveld GW (1970) Color quality of frozen strawberries: effect of anthocyanin, pH, total acidity and ascorbic acid variability. J Food Sci 35(4):448–452CrossRefGoogle Scholar
  112. 112.
    Reddy N, Yang Y (2005) Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol 23(1):22–27PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Reddy N, Yang Y (2005) Structure and properties of high quality natural cellulose fibers from cornstalks. Polymer 46(15):5494–5500CrossRefGoogle Scholar
  114. 114.
    Hurter RW, Eng P (2010) Non-wood fibre-2010 and beyond prospects for non-wood paper production in Asia Pacific. In: Appita Asia symposiumGoogle Scholar
  115. 115.
    Byrd M, Hurter R (2005) A simplified pulping and bleaching process for pithcontaining nonwoods: trials on whole corn stalks. In: 2005 TAPPI engineering, pulping and environmental conferenceGoogle Scholar
  116. 116.
    Capretti G (2003) Suitability of non-wood fibres for the paper industry. In: Experimental station for cellulose and paperGoogle Scholar
  117. 117.
    Saijonkari-Pahkala K (2008) Non-wood plants as raw material for pulp and paper. Agric Food Sci 10(1):1–101Google Scholar
  118. 118.
    Chen HZ, Fu XG (2011) A method and equipment for the fractionation of biomass into long fiber fraction and short fiber fraction in dry condition. China Patent 201110233853.6Google Scholar
  119. 119.
    Patrick K (2011) Dissolving pulp gold rush in high gear. Paper 360:8–12Google Scholar
  120. 120.
    Ma X, Huang LL, Cao S et al (2012) Preparation of bamboodissolving pulp for textile production. Part 2. optimization of pulping conditions of hydrolyzed bamboo and its kinetics. BioResources 7(2):1866–1875Google Scholar
  121. 121.
    Ibarra D, Köpcke V, Larsson PT et al (2010) Combination ofalkaline and enzymatic treatments as a process for upgrading sisal paper-grade pulp to dissolving-grade pulp. Bioresour Technol 101(19):7416–7423PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Patrick K (2011) Dissolving pulp gold rush in high gear. Paper 360:8–12Google Scholar
  123. 123.
    Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Ragauskas AJ, Williams CK, Davison BH et al (2006) The path forward forbiofuels and biomaterials. Sci 311(5760):484–489PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Behin J, Zeyghami M (2009) Dissolving pulp from corn stalk residue and wastewater of Merox unit. Chem Eng J 152(1):26–35CrossRefGoogle Scholar
  126. 126.
    Peng XW, Chen HZ (2011) Hemicellulose sugar recovery from steam-exploded wheat straw for microbial oil production. Process Biochem 47(2):209–215Google Scholar
  127. 127.
    Montane D, Farriol X, Salvado J et al (1998) Application of steam explosion to the fractionation and rapid vapor-phase alkaline pulping of wheat straw. Biomass Bioenergy 14(3):261–276CrossRefGoogle Scholar
  128. 128.
    Reddy N, Yang Y (2007) Structure and properties of natural cellulose fibers obtained from sorghum leaves and stems. J Agric Food Chem 55(14):5569–5574PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Isogai A, Usuda M, Kato T et al (1989) Solid-state CP/MAS carbon- 13 NMR study of cellulose polymorphs. Macromolecules 22(7):3168–3172CrossRefGoogle Scholar
  130. 130.
    Tanahashi M (1990) Characterization and degradation mechanisms of wood components by steam explosion and utilization of exploded wood. In: Wood research, vol 79. Bulletin of the Wood Research Institute Kyoto University, pp 49–117Google Scholar
  131. 131.
    Hyatt JA, Fengl RW, Edgar KJ et al (2000) Process for the co-production of dissolving-grade pulp and xylan. US Patent 6,057,438Google Scholar
  132. 132.
    Christov L, Akhtar M, Prior B (1996) Impact of xylanase and fungal pretreatment on alkali solubility and brightness of dissolving pulp. Holzforschung 50(6):579–581CrossRefGoogle Scholar
  133. 133.
    Jin SY, Chen HZ (2006) Superfine grinding of steam-exploded rice straw and its enzymatic hydrolysis. Biochem Eng J 30(3):225–230CrossRefGoogle Scholar
  134. 134.
    Chen HZ, Qiu WH (2010) Key technologies for bioethanol production from lignocellulose. Biotechnol Adv 28(5):556–562PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93(1):1–10PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Almeida JRM, Bertilsson M, Gorwa-Grauslund MF et al (2009) Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl Microbiol Biotechnol 82(4):625–638PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Yu B, Chen HZ (2010) Effect of the ash on enzymatic hydrolysis of steam-exploded rice straw. Bioresour Technol 101(23):9114–9119CrossRefGoogle Scholar
  138. 138.
    Liu ZH, Qin L, Jin MJ et al (2013) Evaluation of storage methods for the conversion of corn stover biomass tosugars based on steam explosion pretreatment. Bioresour Technol 132C(2):5–15CrossRefGoogle Scholar
  139. 139.
    Ostergaard S, Olsson L, Nielsen J (2000) Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol R 64(1):34–50CrossRefGoogle Scholar
  140. 140.
    Li H, Zhang X, Shen Y et al (2009) Inhibitors and their effects on Saccharomyces cerevisiae and relevant countermeasures in bioprocess of ethanol production from lignocellulose-a review. Chin J Biotechnol 25(9):1321–1328Google Scholar
  141. 141.
    Li J, Gellerstedt G, Toven K (2009) Steam explosion lignins; their extraction, structure and potential as feedstock for biodiesel and chemicals. Bioresour Technol 100(9):2556–2561PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Hahn-Hägerdal B, Wahlbom C, Gárdonyi M et al (2001) Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Metab Eng 73:53–84CrossRefGoogle Scholar
  143. 143.
    Tengborg C, Stenberg K, Galbe M et al (1998) Comparison of SO2 and H2SO4 impregnation of softwood prior to steam pretreatment on ethanol production. Appl Biochem Biotechnol 70–72(1):3–15CrossRefGoogle Scholar
  144. 144.
    Söderström J, Pilcher L, Galbe M et al (2002) Two-step steam pretreatment of softwood with SO2 impregnation for ethanol production. Appl Biochem Biotechnol 98–100(1):5–21PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Brodeur G, Yau E, Badal K et al (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: A review. Enzyme Res 2011:1–17CrossRefGoogle Scholar
  146. 146.
    Zhao ZM, Wang L, Chen HZ (2015) A novel steam explosion sterilization improving solid-state fermentation performance. Bioresource Technol 192(9):547–555CrossRefGoogle Scholar
  147. 147.
    Sui WJ, Chen HZ (2016) Effects of water states on steam explosion of lignocellulosic biomass. Bioresour Technol 199(1):155–163PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Halpern JM, Gormley CA, Keech MA et al (2014) Thermomechanical properties, antibiotic release, and bioactivity of a sterilized cyclodextrin drug delivery system. J Mater Chem B 2:2764–2772PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Mei LH, Yao SJ, Lin DQ (1999) Biochemical production and processes. Science Press, BeijingGoogle Scholar
  150. 150.
    Wang ZM (2003) Choice of disinfection and sterilization methods. Pharm Eng Des 24:39–46Google Scholar
  151. 151.
    Jeng DK, Kaczmarek KA, Woodworth AG et al (1987) Mechanism of microwave sterilization in the dry state. Appl Environ Microb 53:2133–2137Google Scholar
  152. 152.
    Rai R, Tallawi M, Roether JA et al (2013) Sterilization effects on the physical properties and cytotoxicity of poly (glycerol sebacate). Mater Lett 105:32–35CrossRefGoogle Scholar
  153. 153.
    Verma N, Kumar V, Bansal MC (2012) Utilization of egg shell waste in cellulase production by Neurospora crassa under wheat bran-based solid state fermentation. Pol J Environ Stud 21:491–497Google Scholar
  154. 154.
    Wang XS, Chen JP (2009) Biosorption of Congo red from aqueous solution using wheat bran and rice bran: batch studies. Sep Purif Technol 44:1452–1466Google Scholar
  155. 155.
    Yao MY, Huang FL, Chen CG et al (2006) Principles of chemical engineering. Tianjin Science and Technology Press, TianjinGoogle Scholar
  156. 156.
    Kadam KL, Chin CY, Brown LW (2008) Flexible biorefinery for producing fermentation sugars, lignin and pulp from corn stover. J Ind Microbiol Biotechnol 35(5):331–341PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Ververis C, Georghiou K, Christodoulakis N et al (2004) Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Ind Crops Prod 19(3):245–254CrossRefGoogle Scholar
  158. 158.
    Tang J, Chen K, Huang F et al (2012) Characterization of the pretreatment liquor of biomass from the perennial grass, Eulaliopsis binata, for the production of dissolving pulp. Bioresour Technol 129(10):548–552PubMedPubMedCentralGoogle Scholar
  159. 159.
    Agnihotri S, Dutt D, Tyagi C (2010) Complete characterization of bagasse of earlyspecies of Saccharum officinerum-Co 89003 for pulp and paper making. Bioresources 5(2):1197–1214Google Scholar
  160. 160.
    Ma X, Huang LL, Chen Y (2011) Preparation of bamboo dissolving pulp for textile production; part 1. Study on prehydrolysis of green bamboo for producing dissolving pulp. BioResources 6(2):14281439Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Process EngineeringChinese Academy of SciencesBeijingChina

Personalised recommendations