Physical–Chemical Properties of Solid Substrates

  • Hongzhang ChenEmail author
Part of the Green Chemistry and Sustainable Technology book series (GCST)


Physical–chemical properties of solid substrates are important parameters of high-solid and multi-phase bioprocess. The chemical properties refer to the biomass recalcitrance and heterogeneity which caused by its chemical composition. The physical properties include porous properties, rheology properties, and water state. In this chapter, the composition and recalcitrance of the solid substrates are analyzed, and the change laws of physical–chemical properties such as porous properties, rheology properties, and water states are revealed, which is significant for bioconversion of biomass in high-solid and multi-phase bioprocess. In addition, solid effects caused by physical–chemical properties of solid substrates were also systematically discussed and investigated with the expectation of guiding bioconversion process of biomass.


High solid Chemical composition Physical property Recalcitrance Solid effects 


  1. 1.
    Koppram R, Tomás-Pejó E, Xiros C et al (2014) Lignocellulosic ethanol production at high-gravity: challenges and perspectives. Trends Biotechnol 32(1):46–53CrossRefPubMedGoogle Scholar
  2. 2.
    Mood SH, Golfeshan AH, Tabatabaei M et al (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energy Rev 27(6):77–93CrossRefGoogle Scholar
  3. 3.
    Zhao XB, Zhang L, Liu D (2012) Biomass recalcitrance, Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuel Bioprod Bior 6(4):561–579CrossRefGoogle Scholar
  4. 4.
    Chen HZ, Wang L (2016) Technologies for biochemical conversion of biomass. Chemical Industry Press, BeijingGoogle Scholar
  5. 5.
    Pei JC, Ping QW, Tang AM (2012) Plant fiber chemistry. China Light Industry Press, BeijingGoogle Scholar
  6. 6.
    Liu RQ (1985) Chemistry basis for cellulose. Science Press, BeijingGoogle Scholar
  7. 7.
    Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291CrossRefPubMedGoogle Scholar
  8. 8.
    O’sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4(3):173–207CrossRefGoogle Scholar
  9. 9.
    Himmel ME, Adney WS, Ding SY et al (2007) Biomass recalcitrance: barrier to economic ethanol biorefineries. In: ACS National meeting book of abstractsGoogle Scholar
  10. 10.
    Chen HZ, Liu ZH (2015) Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products. Biotechnol J 10(6):866–885CrossRefPubMedGoogle Scholar
  11. 11.
    Himmel M, Ding S, Johnson D et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807CrossRefPubMedGoogle Scholar
  12. 12.
    Yu B, Chen HZ (2010) Effect of the ash on enzymatic hydrolysis of steam-exploded rice straw. Bioresource Technol 101(23):9114–9119CrossRefGoogle Scholar
  13. 13.
    Chen HZ, Li ZH (2002) Study on solid-state fermentation and fermenter. Cheml Ind Eng Prog 21(1):37–39Google Scholar
  14. 14.
    Alvira P, Tomás-Pejó E, Ballesteros M et al (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymolysis: a review. Bioresource Technol 101(13):4851–4861CrossRefGoogle Scholar
  15. 15.
    Felby C, Thygesen LG, Kristensen JB et al (2008) Cellulosewater interactions during enzymolysis as studied by time domain NMR. Cellulose 15(5):703–710CrossRefGoogle Scholar
  16. 16.
    Kristensen JB, Felby C, Jørgensen H (2009) Yield-determining factors in high-solids enzymolysis of lignocellulose. Biotechnol Biofuel 2(1):11CrossRefGoogle Scholar
  17. 17.
    Brownell HH, Yu EKC, Saddler JN (1986) Steam-explosion pretreatment of wood: effect of chip size, acid, moisture content and pressure drop. Biotechnol Bioeng 28(6):792–801CrossRefPubMedGoogle Scholar
  18. 18.
    Sui WJ, Chen HZ (2014) Multi-stage energy analysis of steam explosion process. Chem Eng Sci 116(SEP):254–262CrossRefGoogle Scholar
  19. 19.
    Berry SL, Roderick ML (2005) Plant-water relations and the fibre saturation point. New Phytol 168(1):25–37CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang YZ, Chen HZ (2012) Multiscale modeling of biomass pretreatment for optimization of steam explosion conditions. Chem Eng Sci 75(25):177–182CrossRefGoogle Scholar
  21. 21.
    Cullis IF, Saddler JN, Mansfield SD (2004) Effect of initial moisture content and chip size on the bioconversion efficiency of softwood lignocellulosics. Biotechnol Bioeng 85(4):413–421CrossRefPubMedGoogle Scholar
  22. 22.
    Ewanick S, Bura R (2011) The effect of biomass moisture content on bioethanol yield from steam pretreated switchgrass and sugarcane bagasse. Bioresource Technol 102(3):2651–2658CrossRefGoogle Scholar
  23. 23.
    Ferreira LC, Nilsen PJ, Fdz-Polanco F et al (2014) Biomethane potential of wheat straw: influence of particle size, water impregnation and thermal hydrolysis. Chem Eng J 242(8):254–259CrossRefGoogle Scholar
  24. 24.
    Selig MJ, Thygesen LG, Felby C (2014) Correlating the ability of lignocellulosic polymers to constrain water with the potential to inhibit cellulose saccharification. Biotechnol Biofuel 7(1):1–10CrossRefGoogle Scholar
  25. 25.
    Roche CM, Dibble CJ, Knutsen JS et al (2009) Particle concentration and yield stress of biomass slurries during enzymatic hydrolysis at high-solids loadings. Biotechnol Bioeng 104(2):290–300CrossRefPubMedGoogle Scholar
  26. 26.
    Deng YY, Koper M, Haigh M et al (2015) Country-level assessment of long-term global bioenergy potential. Biomass Bioenergy 74:253–267CrossRefGoogle Scholar
  27. 27.
    Nicholls D (2015) Bioenergy from forests: the power potential of wood biomass. Science Findings-Pacific Northwest Research Station, USDA Forest ServiceGoogle Scholar
  28. 28.
    Viamajala S, McMillan JD, Schell DJ et al (2009) Rheology of corn stover slurries at high-solids concentrations-effects of saccharification and particle size. Bioresource Technol 100(2):925–934CrossRefGoogle Scholar
  29. 29.
    Roche CM, Dibble CJ, Stickel JJ (2009) Laboratory-scale method for enzymatic saccharification of lignocellulosic biomass at high-solids loadings. Biotechnol Biofuel 2(1):28CrossRefGoogle Scholar
  30. 30.
    Hodge DB, Karim MN, Schell DJ et al (2008) Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresource Technol 99(18):8940–8948CrossRefGoogle Scholar
  31. 31.
    Yang J, Zhang X, Yong Q et al (2011) Three-stage enzymatic hydrolysis of steam-exploded corn stover at high substrate concentration. Bioresource Technol 102(7):4905–4908CrossRefGoogle Scholar
  32. 32.
    Wang W, Zhuang XS, Yuan ZH et al (2012) High consistency enzymatic saccharification of sweet sorghum bagasse pretreated with liquid hot water. Bioresource Technol 108(2):252–257CrossRefGoogle Scholar
  33. 33.
    Tai C, Keshwani DR, Voltan DS et al (2015) Optimal control strategy for fed-batch enzymatic hydrolysis of lignocellulosic biomass based on epidemic modeling. Biotechnol Bioeng 112(7):1376–1382CrossRefPubMedGoogle Scholar
  34. 34.
    Gao YS, Xu JL, Yuan ZH et al (2014) Optimization of fed-batch enzyrnatic hydrolysis from alkali-pretreated sugarcane bagasse for high-concentration sugar production. Bioresource Technol 167(3):41–45CrossRefGoogle Scholar
  35. 35.
    Liu ZH, Chen HZ (2016) Biomass–water interaction and its correlations with enzymatic hydrolysis of steam-exploded corn stover. Acs Sustain Chem Eng 4(3):1274–1285CrossRefGoogle Scholar
  36. 36.
    Modenbach A, Nokes S (2013) Enzymatic hydrolysis of biomass at high-solids loadings–a review. Biomass Bioenergy 56(38):526–544CrossRefGoogle Scholar
  37. 37.
    Um B, Hanley T (2008) A comparison of simple rheological parameters and simulation data for Zymomonas mobilis fermentation broths with high substrate loading in a 3-L bioreactor. App Biochem Biotechnol 145(1):29–38CrossRefGoogle Scholar
  38. 38.
    Knutsen JS, Liberatore MW (2010) Rheology modification and enzyme kinetics of high-solids cellulosic slurries. Energy Fuel 24(12):6506–6512CrossRefGoogle Scholar
  39. 39.
    Szijarto N, Horan E, Zhang JH et al (2011) Thermostable endoglucanases in the liquefaction of hydrothermally pretreated wheat straw. Biotechnol Biofuel 4(1):2CrossRefGoogle Scholar
  40. 40.
    Fei BH (2014) Technology used for characterization of mechanical properties of wood cell wall and its application. Science Press, BeijingGoogle Scholar
  41. 41.
    Shao ZP (2012) Plant Materials (wood, bamboo) fracture mechanics. Science Press, BeijingGoogle Scholar
  42. 42.
    Liu ZH, Chen HZ (2016) Mechanical property of different corn stover morphological fractions and its correlations with high-solids enzymatic hydrolysis by periodic peristalsis. Bioresource Technol 214(AUG):292–302CrossRefPubMedGoogle Scholar
  43. 43.
    Jacquet N, Maniet G, Vanderghem C et al (2015) Application of steam explosion as pretreatment on lignocellulosic material: a review. Ind Eng Chem Res 54(10):2593–2598CrossRefGoogle Scholar
  44. 44.
    Roberts K, Lavenson D, Tozzi E et al (2011) The effects of water interactions in cellulose suspensions on mass transfer and saccharification efficiency at high-solids loadings. Cellulose 18(3):759–773CrossRefGoogle Scholar
  45. 45.
    Mani S, Tabil LG, Sokhansanj S (2006) Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass Bioenergy 30(7):648–654CrossRefGoogle Scholar
  46. 46.
    Miao Z, Grift TE, Hansen AC et al (2011) Energy requirement for comminution of biomass in relation to particle physical properties. Ind Crop Prod 33(2):504–513CrossRefGoogle Scholar
  47. 47.
    Chen HZ, Fu XG (2010) Periodic peristaltic stirring method. China Patent, CN101773799AGoogle Scholar
  48. 48.
    Liu ZH, Chen HZ (2016) Periodic peristalsis releasing constrained water in high solids enzymolysis of steam exploded corn stover. Bioresource Technol 205(APR):142–152Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Process EngineeringChinese Academy of SciencesBeijingChina

Personalised recommendations