Structured Deformations of Continua: Theory and Applications

  • Marco MorandottiEmail author
Conference paper
Part of the Mathematics for Industry book series (MFI, volume 30)


The scope of this contribution is to present an overview of the theory of structured deformations of continua, together with some applications. Structured deformations aim at being a unified theory in which elastic and plastic behaviours, as well as fractures and defects can be described in a single setting. Since its introduction in the scientific community of rational mechanicists [10], the theory has been put in the framework of variational calculus [8], thus allowing for solution of problems via energy minimization. Some background, three problems and a discussion on future directions are presented.



The author acknowledges partial support for this research from the following grants: FCT\(\_\)UTA/CMU/MAT/0005/2009 of the Fundação para a Ciência e a Tecnologia through the Carnegie Mellon Portugal Program; ERC Advanced grant Quasistatic and Dynamic Evolution Problems in Plasticity and Fracture (Grant agreement 290888); INdAM-GNAMPA project 2015 Fenomeni Critici nella Meccanica dei Materiali: un Approccio Variazionale; ERC Starting grant High-Dimensional Sparse Optimal Control (Grant agreement 306274). The author is a member of the GNAMPA group of INdAM. The author is grateful to J. Matias and D. R. Owen for valuable suggestions in writing this note.


  1. 1.
    Alberti, G.: J. Funct. Anal. 100, 110–118 (1991)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Ambrosio, L., Fusco, N., Pallara, D.: OUP, (2000). ISBN: 9780198502456Google Scholar
  3. 3.
    Baía, M., Matias, J., Santos, P.M.: Proc. Royal Soc. Edinb. 142A, 239–271 (2012)CrossRefGoogle Scholar
  4. 4.
    Barroso, A.C., Matias, J., Morandotti, M., Owen, D.R.: Math. Mech. Complex Syst. 5(2), 163–189 (2017)Google Scholar
  5. 5.
    Barroso, A.C., Matias, J., Morandotti, M., Owen, D.R.: Arch. Rational Mech. Anal. 225(3), 1025–1072 (2017)Google Scholar
  6. 6.
    Carita, G., Matias, J., Morandotti, M., Owen, D.R.: Dimension reduction in the context of structured deformations (2017). arXiv: 1709.02869
  7. 7.
    Choksi, R., Del Piero, G., Fonseca, I., Owen, D.R.: Math. Mech. Solids. 4, 321–356 (1999)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Choksi, R., Fonseca, I.: Arch. Rational Mech. Anal. 138, 37–103 (1997)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Ciblak, N., Lipkin, H.: In: Proceedings of DETC’98, Atlanta, Georgia Sep 13–16 (1998)Google Scholar
  10. 10.
    Del Piero, G., Owen, D.R.: Arch. Ration. Mech. Anal. 124, 99–155 (1993)CrossRefGoogle Scholar
  11. 11.
    Del Piero, G., Truskinovsky, L.: Int. J. Solids Struct. 38, 1135–1148 (2001)CrossRefGoogle Scholar
  12. 12.
    Deseri, L., Owen, D.R.: J. Elast. 70, 197–236 (2003)CrossRefGoogle Scholar
  13. 13.
    Deseri, L., Owen, D.R.: Int. J. Eng. Sci. 96, 111–140 (2015)CrossRefGoogle Scholar
  14. 14.
    Fonseca, I., Leoni, G.: Springer, New York, (2007). ISBN 978-0-387-69006-3Google Scholar
  15. 15.
    Fonseca, I., Müller, S.: Arch. Ration. Mech. Anal. 123, 1–49 (1993)CrossRefGoogle Scholar
  16. 16.
    Matias, J., Morandotti, M., Zappale, E.: J. Math. Anal. Appl. 449, 1094–1132 (2017)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Matias, J., Santos, P.M.: Appl. Math. Optim. 69, 459–485 (2014)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Owen, D.R.: J. Elasticity 127(1), 115–150 (2017)Google Scholar
  19. 19.
    Owen, D.R., Paroni, R.: Arch. Ration. Mech. Anal. 155, 215–235 (2000)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Owen, D.R., Paroni, R.: Arch. Ration. Mech. Anal. 218, 1633–1652 (2015)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Paroni, R.: In: Del Piero, G., Owen, D.R. (eds.) CISM. vol. 447, Springer (2004)Google Scholar
  22. 22.
    Šilhavý, M.: Math. Mech. Complex Syst. 3, 83–100 (2015)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Šilhavý, M.: Math. Mech. Complex Syst. 5(2), 191–215 (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Technische Universität MünchenGarchingGermany

Personalised recommendations