Advertisement

Nuclear Reaction Analysis

  • Markus WildeEmail author
  • Katsuyuki Fukutani
Chapter

Abstract

Nuclear reaction analysis is a method to quantitatively determine the concentration versus depth distribution of light elements in the near-surface region of solids. To detect a specific nucleus A, the analyzed material is bombarded with a beam of projectile ions (a) at a high energy (100 keV–20 MeV) that is sufficient to overcome the Coulomb repulsion barrier to fuse the nuclei of a and A. Conserving the total energy, the resulting nuclear reaction A(a,b)B forms a new nucleus B and emits secondary particles (b: protons (p), neutrons (n), 4He ions (‘α particles’) and/or γ-photons) with well-defined high (keV-MeV) energies. The presence of nucleus A in the target is then proven by registering such secondary particles (b) or the reaction product (B) with a suitable detector.

Keywords

Ion beam analysis Light element depth profiling (Resonant) nuclear reaction Hydrogen quantitation Hydrogen dynamics 

References

  1. 1.
    Trocellier, P., Berger, P., Wilde, M.: Nuclear Reaction Analysis. Encycl. Anal. Chem. 1–17 (2016)Google Scholar
  2. 2.
    Battistig, G., Amsel, G., d’Artemare, E., Vickridge, I.: A very narrow resonance in 18O(p, α)15N near 150 keV: Application to isotopic tracing: I. Resonance width measurement. Nucl. Instrum. Methods Phys. Res. B 61, 369–376 (1991)CrossRefGoogle Scholar
  3. 3.
    Amsel, G., Maurel, B.: High resolution techniques for nuclear reaction narrow resonance width measurements and for shallow depth profiling. Nucl. Instrum. Methods Phys. Res. 218, 183–196 (1983)CrossRefGoogle Scholar
  4. 4.
    Wilde, M., Fukutani, K.: Hydrogen detection near surfaces and shallow interfaces with resonant nuclear reaction analysis. Surf. Sci. Rep. 69, 196–295 (2014)CrossRefGoogle Scholar
  5. 5.
    Alimov, VKh, Mayer, M., Roth, J.: Differential cross-section of the D(3He, p)4He nuclear reaction and depth profiling of deuterium up to large depths. Nucl. Instrum. Methods Phys. Res. B 234, 169–175 (2005)CrossRefGoogle Scholar
  6. 6.
    Langley, R.A., Picraux, S.T., Vook, F.L.: Depth distribution profiling of deuterium and 3He. J. Nucl. Mater. 53, 257–261 (1974)CrossRefGoogle Scholar
  7. 7.
    Wilde, M.; Ohno, S.; Ogura, S.; Fukutani, K.; Matsuzaki, H.: Quantification of hydrogen concentrations in surface and interface layers and bulk materials through depth profiling with nuclear reaction analysis. J. Vis. Exp. 109, e53452/1—e53452/12 (2016)Google Scholar
  8. 8.
    Fukutani, K.; Itoh, A.; Wilde, M.; Matsumoto, M.: Zero-point vibration of hydrogen adsorbed on si and pt surfaces. Phys. Rev. Lett. 88, 116101/1—116101/4 (2002)Google Scholar
  9. 9.
    Fukutani, K., Iwai, H., Murata, Y., Yamashita, H.: Hydrogen at the surface and interface of metals on Si(111). Phys. Rev. B 59, 13020–13025 (1999)CrossRefGoogle Scholar
  10. 10.
    Wilde, M., Fukutani, K.: Penetration mechanisms of surface-adsorbed hydrogen atoms into bulk metals: Experiment and model. Phys. Rev. B. 78, 115411/1—115411/10 (2008)Google Scholar
  11. 11.
    Wilde, M., Fukutani, K., Naschitzki, M., Freund, H.-J.: Hydrogen absorption in oxide-supported palladium nanocrystals. Phys. Rev. B. 77, 113412/1—113412/4 (2008)Google Scholar
  12. 12.
    Wilde, M., Fukutani, K., Ludwig, W., Brandt, B., Fischer, J.H., Schauermann, S., Freund, H.J.: Influence of carbon deposition on the hydrogen distribution in Pd nanoparticles and their reactivity in olefin hydrogenation. Angew. Chem. Int. Ed. 47, 9289–9293 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Industrial ScienceThe University of TokyoTokyoJapan

Personalised recommendations