Advertisement

Total Reflection X-Ray Fluorescence

  • Jun KawaiEmail author
Chapter

Abstract

Monochromatic or non-monochromatic X-rays from an X-ray tube or a synchrotron radiation beamline impinge on a flat surface at a glancing angle less than the critical angle of X-ray total reflection (usually around 0.1°), and the incident X-rays are totally reflected by the flat surface. The electric field of the incident X-rays exists at the surface from the top layer to a few nanometer depth. This electric field is called an evanescent wave. This electric field of X-rays ionizes an inner-shell electron, and consequently, X-ray fluorescence is emitted. The X-ray fluorescence (XRF) is a term refers to the characteristic X-ray emission due to X-ray excitation.

Keywords

Trace analysis Elemental analysis Silicon wafer analysis Environmental analysis 

References

  1. 1.
    Klockenkämper R., von Bohlen, A.: Total-Reflection X-ray Fluorescence Analysis and Related Method, 2nd ed. Wiley (2015)Google Scholar
  2. 2.
    Khumpuang, S., Imura, F., Hara, S.: Analyses of cleanroom-free performance and transistor manufacturing cycle time of minimal fab. IEEE Trans. Semiconductor Manufacturing, 28, 551–556 (2015)CrossRefGoogle Scholar
  3. 3.
    de Boer, D.K.G., Leenaers, A.J.G., van den Hoogenhof, W.W.: Glancing-incidence X-ray analysis of thin-layered materials: a review. X-Ray Spectrom. 24, 91–102 (1995)CrossRefGoogle Scholar
  4. 4.
    Kawai, J., Takami, M., Fujinami, M., Hashiguchi, Y., Hayakawa, S., Gohshi, Y.: A numerical simulation of total reflection X-ray photoelectron spectroscopy (TRXPS). Spectrochim. Acta 47B, 983–991 (1992)CrossRefGoogle Scholar
  5. 5.
    Kunimura, S., Kawai, J.: An X-ray refractive lens comprising two sections cut from a gramophone record for a portable total reflection X-ray fluorescence spectrometer. Spectrochim. Acta 64B, 771–774 (2009)CrossRefGoogle Scholar
  6. 6.
    Yoneda, Y., Horiuchi, T.: Optical flats for use in X-ray spectro-chemical microanalysis. Rev. Sci. Instrum. 42, 1069–1070 (1971)CrossRefGoogle Scholar
  7. 7.
    Aiginger, H., Wobrauschek, P.: A method for quantitative X-ray fluorescence analysis in the nanogram region. Nucl. Instrum. Methods 114, 157–158 (1974)CrossRefGoogle Scholar
  8. 8.
    Knoth, J., Schwenke, H.: An X-ray fluorescence spectrometer with totally reflecting sample support for trace analysis at the ppb level. Fresenius Z. Anal. Chem. 291, 200–204 (1978)CrossRefGoogle Scholar
  9. 9.
    Iida, A., Yoshinaga, A., Sakurai, K., Gohshi, Y.: Synchrotron radiation excited X-ray fluorescence analysis using total reflection of X-rays. Anal. Chem. 58, 394–397 (1986)CrossRefGoogle Scholar
  10. 10.
    ISO 14706:2000.: Surface chemical analysis—Determination of surface elemental contamination on silicon wafers by total reflection X-ray fluorescence (TXRF) spectroscopy (2000)Google Scholar
  11. 11.
    Kunimura, S., Kawai, J.: Trace elemental determination by portable total reflection X-ray fluorescence spectrometer with low wattage Xray tube. X-Ray Spectrom. 42, 171–173 (2013)CrossRefGoogle Scholar
  12. 12.
    Liu, Y., Imashuku, S., Kawai, J.: Trace elemental analysis of leaching solutions of Hijiki seaweeds by a portable total reflection X-ray fluorescence spectrometer. Adv. X-Ray Chem. Anal. Japan 45, 203–209 (2014)Google Scholar
  13. 13.
    Kunimura, S., Kawai, J.: Portable total reflection X-ray fluorescence spectrometer for ultra trace elemental determination. Adv. X-Ray Chem. Anal. Japan 41, 29–44 (2010)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringKyoto UniversityKyotoJapan

Personalised recommendations