Advertisement

Surface-Enhanced Infrared Absorption Spectroscopy

  • Masatoshi OsawaEmail author
Chapter

Abstract

Surface-enhanced infrared absorption (SEIRA) is an effect in which infrared absorption of molecules adsorbed on metal surfaces is significantly enhanced (10–1000 times compared to normal measurements without the metal) and has characteristic features as follows:(Osawa in Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS). Bull Chem Soc Jpn 70:2861–2880, 1997 [1]).

Keywords

Infrared spectroscopy Localized plasmon Electrochemical interfaces Electrode kinetics Electrocatalysis Biosensing 

References

  1. 1.
    Osawa, M.: Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS). Bull. Chem. Soc. Jpn. 70, 2861–2880 (1997)CrossRefGoogle Scholar
  2. 2.
    Osawa, M., Ikeda, M.: Surface-enhanced infrared absorption of P-Nitrobenzoic acid deposited on Silver Island Films: contribution of electromagnetic and chemical mechanisms. J. Phys. Chem. 95, 9914–9919 (1991)CrossRefGoogle Scholar
  3. 3.
    Osawa, M., Ataka, K., Yoshii, K., Nishikawa, Y.: Surface-enahced infrared spectroscopy: the origin of the absorption enhancement and band selection rule in the infrared spectra of molecules adsorbed on fine metal particles. Appl. Spectrosc. 47, 1497–1502 (1993)CrossRefGoogle Scholar
  4. 4.
    Hartstein, A., Kirtley, J.R., Tsang, J.C.: Enhancement of the infrared-absorption from molecular monolayers with thin metal overlayers. Phys. Rev. Lett. 45, 201–204 (1980)CrossRefGoogle Scholar
  5. 5.
    Neubrech, F., Pucci, A., Cornelius, T.W., Karim, S., Garcia-Etxarri, A., Aizpurua, J.: Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Phys. Rev. Lett. 101, 157403/1–157403/4 (2008)Google Scholar
  6. 6.
    Alonso-Gonzalez, P., Albella, P., Neubrech, F., Huck, C., Chen, J., Golmar, F., Casanova, F., Hueso, L.E., Pucci, A., Aizpurua, J., Hillenbrand, R.: Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas. Phys. Rev. Lett. 110, 203902/1–203902/6 (2013)Google Scholar
  7. 7.
    Shimada, T., Nakashima, H., Kumagai, Y., Ishigo, Y., Tsushima, M., Ikari, A., Suzuki, Y.: What is the key structural parameter for infrared absorption enhancement on nanostructures? J. Phys. Chem. C 120, 534–541 (2016)CrossRefGoogle Scholar
  8. 8.
    Uchida, T., Osawa, M.: Probing the electrochemical interface by surface-enhanced infrared absorption spectroscopy with ATR configuration (ATR-SEIRAS). Rev. Polarography 62, 93–100 (2016)CrossRefGoogle Scholar
  9. 9.
    Miki, A., Ye, S., Osawa, M.: Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions. Chem. Commun., 1500–1501 (2002)Google Scholar
  10. 10.
    Yan, Y.-G., Li, Q.-X., Huo, S.-J., Ma, M., Cai, W.-B., Osawa, M.: Ubiquitous strategy for probing atr surface-enhanced infrared absorption at platinum group metal-electrolyte interfaces. J. Phys. Chem. B. 109, 7900–7906 (2005)CrossRefGoogle Scholar
  11. 11.
    Ataka, K., Yotsuyanagi, T., Osawa, M.: Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. 100, 10664–10672 (1996)CrossRefGoogle Scholar
  12. 12.
    Wandlowski, T., Ataka, K., Pronkin, S., Diesing, D.: Surface enhanced infrared spectroscopy—Au(1 1 1–20 nm)/sulphuric acid—new aspects and challenges. Electrochim. Acta 49, 1233–1247 (2004)CrossRefGoogle Scholar
  13. 13.
    Zhu, Y., Uchida, H., Watanabe, M.: Oxidation of carbon monoxide at a platinum film electrode studied by fourier transform infrared spectroscopy with attenuated total reflection technique. Langmuir 15, 8757–8764 (1999)CrossRefGoogle Scholar
  14. 14.
    Chen, Y.-J., Sun, S.-G., Chen, S.-P., Li, J.-T., Gong, H.: Anomalous Ir properties of nanostructure films created by square wave potential on an array of Pt microelectrodes: an in situ microscope FT-IRS study of CO adsorption. Langmuir 20, 9920–9925 (2004)CrossRefGoogle Scholar
  15. 15.
    Wu, C.H., Khanikaev, A.B., Adato, R., Arju, N., Yanik, A.A., Altug, H., Shvets, G.: Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater. 11, 69–75 (2012)CrossRefGoogle Scholar
  16. 16.
    Osawa, M.: In-situ surface-enhanced infrared spectroscopy of the electrode/solution interface. In: Alkire, R.C., Kolb, D.M., Lipkowski, J., Ross, P.H. (eds.) Advances in Electrochemical Science and Engineering, pp. Chapter 8. Wiley-VCH, Weinheim (2006)Google Scholar
  17. 17.
    Cuesta, A.: Composition, structure, and reaction dynamics at electrode-electrolyte interfaces using infrared spectroscopy. In: Wieckowski, A., Korzeniewski, C., Braunschweig, B. (eds.) Vibrational Spectroscopy at Electrified Interfaces. Wiley, Hoboken, Chap. 8 (2013)Google Scholar
  18. 18.
    Osawa, M.: Electrocatalytic reactions on platinum electrodes studied by dynamic surface-enhanced infrared absorption spectroscopy (SEIRAS). In: Sun, S.-G., Christensen, P.A., Wieckowski, A. (eds.) In-Situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis, Chap. 7. Elsevier, Amsterdam (2007)CrossRefGoogle Scholar
  19. 19.
    Ataka, K., Kottke, T., Heberle, J.: Thinner, smaller, faster: IR techniques to probe the functionality of biological and biomimetic systems. Angew. Chem. Int. Ed. 49, 5416–5424 (2010)CrossRefGoogle Scholar
  20. 20.
    Adato, R., Altug, H.: In-Situ Ultra-Sensitive Infrared Absorption Spectroscopy of Biomolecule Interactions in Real Time with Plasmonic Nanoantennas. Nature Commun. 4, (2013)Google Scholar
  21. 21.
    Bockris, J. O’M., Reddy, A.K.N., Gamnoa-Aldeco, M.: Modern Electrochemistry 2a, 2nd edn. Kluwer Academic/Plenum, New York (2000)Google Scholar
  22. 22.
    Ataka, K., Osawa, M.: In Situ infrared study of water-sulfate coadsorption on gold(111) in sulfuric acid solution. Langmuir 14, 951–959 (1998)CrossRefGoogle Scholar
  23. 23.
    Heinzinger, K.: Molecular dynamics of water at interfaces. In: Lipkowski, J., Ross, P.N. (eds.) Structure of electrified interfaces, Chap. 7. VCH, New York (1993)Google Scholar
  24. 24.
    Yang, Y.Y., Zhang, L.N., Osawa, M., Cai, W.B.: Surface-enhanced infrared spectroscopic study of a CO-covered Pt electrode in room-temperature ionic liquid. J. Phys. Chem. Lett. 4, 1582–1586 (2013)CrossRefGoogle Scholar
  25. 25.
    Motobayashi, K., Minami, K., Nishi, N., Sakka, T., Osawa, M.: Hysteresis of potential-dependent changes in ion density and structure of an ionic liquid on a gold electrode. In Situ observation by surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. Lett. 4, 3110–3114 (2013)CrossRefGoogle Scholar
  26. 26.
    Kunimatsu, K., Senzaki, T., Samjeske, G., Tsushima, M., Osawa, M.: Hydrogen adsorption and hydrogen evolution reaction on a polycrystalline Pt electrode studied by surface-enhanced infrared absorption spectroscopy. Electrochim. Acta 52, 5715–5724 (2007)CrossRefGoogle Scholar
  27. 27.
    Samjeské, G., Miki, A., Ye, S., Osawa, M.: Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy. J. Phy. Chem. B 110, 16559–16566 (2006)CrossRefGoogle Scholar
  28. 28.
    Chen, Y.X., Heinen, M., Jusys, Z., Behm, R.J.: Bridge-bonded formate: active intermediate or spectator species in formic acid oxidation on a Pt film electrode? Langmuir 22, 10399–10408 (2006)CrossRefGoogle Scholar
  29. 29.
    Osawa, M., Yoshii, K., Ataka, K., Yotsuyanagi, T.: Real-time monitoring of electrochemical dynamics by submillisecond time-resolved surface-enhanced infrared attenuated-totao-reflection spectroscopy. Langmuir 10, 640–642 (1994)CrossRefGoogle Scholar
  30. 30.
    Yamakata, A., Soeta, E., Ishiyama, T., Osawa, M., Morita, A.: Real-time observation of the destruction of hydration shells under electrochemical force. J. Am. Chem. Soc. 135, 15033–15039 (2013)CrossRefGoogle Scholar
  31. 31.
    Yamakata, A., Uchida, T., Kubota, J., Osawa, M.: Laser-induced potential jump at the electrochemical interface probed by picosecond time-resolved surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. B 110, 6423–6427 (2006)CrossRefGoogle Scholar
  32. 32.
    Bauer, P.R., Bonnefont, A., Krischer, K.: Spatially resolved atr-ftirs study of the formation of macroscopic domains and microislands during CO electrooxidation on Pt. ChemPhysChem 11, 3002–3010 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute for CatalysisHokkaido UniversitySapporoJapan

Personalised recommendations