Role of Proteases in Diabetes Mellitus

  • Shatadal Ghosh
  • Bhawna Pandey
  • Parames C. SilEmail author


Dipeptidyl peptidase-4 (DPP-4), a 110 kDa exopeptidase, selectively cleaves N-terminal dipeptides from a vast array of substrates. DPP-4 is expressed on the surface of many cell types and plays various important roles in diseases like cancer, inflammation, diabetes, obesity. In type 2 diabetes mellitus (T2DM), incretin hormones, glucagon-like peptide-1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) play major roles in the regulation of insulin secretion. Both GLP-1 and GIP are the substrates of DPP-4. That is why DPP-4 inhibitors have gained significantly increasing interest in treating T2DM recently. In addition to some general information on DPP-4, this chapter mainly describes its effects on relevant organs associated with T2DM and recent clinical trials. Besides, roles of some other proteases in diabetes mellitus have also been briefly discussed.


Dipeptidyl peptidase-4 (DPP-4) Incretin hormones Glucagon-like peptide-1 (GLP-1) Glucose-dependent insulinotropic polypeptide (GIP) Clinical trials 


  1. 1.
    Brownlee M (2005) The pathobiology of diabetic complications. Unifying Mech 54:1615–1625Google Scholar
  2. 2.
    Rambhade S et al (2010) Diabetes mellitus—its complications, factors influencing complications and prevention—an overview. J Chem Pharm Res 2:2–7Google Scholar
  3. 3.
    Tripathi BK, Srivastava AK (2006) Diabetes mellitus: complications and therapeutics. Med Sci Monit Basic Res 12:RA130-RA147Google Scholar
  4. 4.
    Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev 93:137–188PubMedCrossRefGoogle Scholar
  5. 5.
    Lobmann R, Schultz G, Lehnert H (2005) Proteases and the diabetic foot syndrome: mechanisms and therapeutic implications. Diabetes Care 28:71–461CrossRefGoogle Scholar
  6. 6.
    Falanga V et al (2005) Wound healing and its impairment in the diabetic foot. Lancet 366:43–1736CrossRefGoogle Scholar
  7. 7.
    Lopez-Otin C, Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J Biol Chem 283:7–30433CrossRefGoogle Scholar
  8. 8.
    Lopez-Otin C, Overall CM (2002) Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol 3:19–509CrossRefGoogle Scholar
  9. 9.
    Spravchikov N et al (2001) Glucose Effects on Skin Keratinocytes. Implic Diabetes Skin Complicat 50:1627–1635Google Scholar
  10. 10.
    Balasubramanyam M, Rema M, Premanand C (2002) Biochemical and molecular mechanisms of diabetic. Curr Sci 83(12)Google Scholar
  11. 11.
    Hober D, Sauter P (2010) Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host. Nat Rev Endocrinol 6:279–289PubMedCrossRefGoogle Scholar
  12. 12.
    Bluestone JA, Herold K, Eisenbarth G (2010) Genetics, pathogenesis and clinical interventions in type[thinsp]1 diabetes. Nature 464:1293–1300PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Association AD (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Supplement 1):S62–S69Google Scholar
  14. 14.
    Fierabracci A (2014) The putative role of proteolytic pathways in the pathogenesis of Type 1 diabetes mellitus: the ‘autophagy’ hypothesis. Med Hypotheses 82:553–557PubMedCrossRefGoogle Scholar
  15. 15.
    Halban PA et al (2014) β-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. Diabetes Care 37:1751–1758PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Hopsu-Havu VK, Glenner GG (1966) A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-beta-naphthylamide. Histochemie 7:197–201PubMedCrossRefGoogle Scholar
  17. 17.
    Mentlein R, Gallwitz B, Schmidt WE (1993) Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 214:35–829CrossRefGoogle Scholar
  18. 18.
    Kieffer TJ, McIntosh CH, Pederson RA (1995) Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 136:96–3585PubMedCrossRefGoogle Scholar
  19. 19.
    Pospisilik JA et al (2001) Metabolism of glucagon by dipeptidyl peptidase IV (CD26). Regul Pept 96(3):41–133CrossRefGoogle Scholar
  20. 20.
    Misumi Y et al (1992) Molecular cloning and sequence analysis of human dipeptidyl peptidase IV, a serine proteinase on the cell surface. Biochim Biophys Acta 1131:6–333Google Scholar
  21. 21.
    Tanaka T et al (1992) Cloning and functional expression of the T cell activation antigen CD26. J Immunol 149:6–481Google Scholar
  22. 22.
    Engel M et al (2003) The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism. Proc Natl Acad Sci U S A 100:8–5063CrossRefGoogle Scholar
  23. 23.
    Hiramatsu H et al (2003) Crystallization and preliminary X-ray study of human dipeptidyl peptidase IV (DPPIV). Acta Crystallogr D Biol Crystallogr 59:6–595CrossRefGoogle Scholar
  24. 24.
    Rasmussen HB et al (2003) Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nat Struct Biol 19–25CrossRefGoogle Scholar
  25. 25.
    Chien CH et al (2004) One site mutation disrupts dimer formation in human DPP-IV proteins. J Biol Chem 279:45–52338Google Scholar
  26. 26.
    Chien CH et al (2006) Identification of hydrophobic residues critical for DPP-IV dimerization. Biochemistry 45:12–7006CrossRefGoogle Scholar
  27. 27.
    Abbott CA et al (1994) Genomic organization, exact localization, and tissue expression of the human CD26 (dipeptidyl peptidase IV) gene. Immunogenetics 40:8–331CrossRefGoogle Scholar
  28. 28.
    Ohnuma K et al (2004) CD26 up-regulates expression of CD86 on antigen-presenting cells by means of caveolin-1. Proc Natl Acad Sci U S A 101:91–14186CrossRefGoogle Scholar
  29. 29.
    Torimoto Y et al (1991) Coassociation of CD26 (dipeptidyl peptidase IV) with CD45 on the surface of human T lymphocytes. J Immunol 147:7–2514Google Scholar
  30. 30.
    Nagatsu I, Nagatsu T, Yamamoto T (1968) Hydrolysis of amino acid beta-naphthylamides by aminopeptidases in human parotid saliva and human serum. Experientia 24:8–347Google Scholar
  31. 31.
    Erickson RH et al (1999) Regulation of the gene for human dipeptidyl peptidase IV by hepatocyte nuclear factor 1 alpha. Biochem J 338:7–91CrossRefGoogle Scholar
  32. 32.
    Fan H et al (1997) Domain-specific N-glycosylation of the membrane glycoprotein dipeptidylpeptidase IV (CD26) influences its subcellular trafficking, biological stability, enzyme activity and protein folding. Eur J Biochem 246:51–243CrossRefGoogle Scholar
  33. 33.
    Delacour D et al (2003) 1-benzyl-2-acetamido-2-deoxy-alpha-D-galactopyranoside blocks the apical biosynthetic pathway in polarized HT-29 cells. J Biol Chem 278:809–37799CrossRefGoogle Scholar
  34. 34.
    Tiruppathi C et al (1993) Genetic evidence for role of DPP IV in intestinal hydrolysis and assimilation of prolyl peptides. Am J Physiol 265:G9–G81Google Scholar
  35. 35.
    Campbell JE, Drucker DJ (2013) Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab 17:37–819CrossRefGoogle Scholar
  36. 36.
    Brubaker PL et al (1997) Circulating and tissue forms of the intestinal growth factor, glucagon-like peptide-2. Endocrinology 138:43–837CrossRefGoogle Scholar
  37. 37.
    Hartmann B et al (2000) In vivo and in vitro degradation of glucagon-like peptide-2 in humans. J Clin Endocrinol Metab 85:8–2884CrossRefGoogle Scholar
  38. 38.
    Deacon CF et al (2000) Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide. J Clin Endocrinol Metab 85:81–3575Google Scholar
  39. 39.
    Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132:57–2131CrossRefGoogle Scholar
  40. 40.
    Kim SJ et al (2005) Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic beta-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3 K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and down-regulation of bax expression. J Biol Chem 280:307–22297Google Scholar
  41. 41.
    Zander M et al (2002) Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet 359:30–824CrossRefGoogle Scholar
  42. 42.
    Holz GG, Kuhtreiber WM, Habener JF (1993) Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7-37). Nature 361:5–362Google Scholar
  43. 43.
    Larsson H, Holst JJ, Ahren B (1997) Glucagon-like peptide-1 reduces hepatic glucose production indirectly through insulin and glucagon in humans. Acta Physiol Scand 160:22–413CrossRefGoogle Scholar
  44. 44.
    Deacon CF et al (2003) Differential regional metabolism of glucagon in anesthetized pigs. Am J Physiol Endocrinol Metab 285:E60–E552CrossRefGoogle Scholar
  45. 45.
    Lambeir AM et al (2001) Kinetic study of the processing by dipeptidyl-peptidase IV/CD26 of neuropeptides involved in pancreatic insulin secretion. FEBS Lett 507:30–327CrossRefGoogle Scholar
  46. 46.
    Ahren B, Hughes TE (2005) Inhibition of dipeptidyl peptidase-4 augments insulin secretion in response to exogenously administered glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide, pituitary adenylate cyclase-activating polypeptide, and gastrin-releasing peptide in mice. Endocrinology 146:9–2055CrossRefGoogle Scholar
  47. 47.
    Ghosh S, Banerjee S, Sil PC (2015) The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: a recent update. Food Chem Toxicol 83:111–124PubMedCrossRefGoogle Scholar
  48. 48.
    Ghosh S et al (2015) Curcumin protects rat liver from streptozotocin-induced diabetic pathophysiology by counteracting reactive oxygen species and inhibiting the activation of p53 and MAPKs mediated stress response pathways. Toxicol Rep 2:365–376PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Brandt I et al (2006) Dipeptidyl-peptidase IV converts intact B-type natriuretic peptide into its des-SerPro form. Clin Chem 52:7–82CrossRefGoogle Scholar
  50. 50.
    Broxmeyer HE et al (2012) Dipeptidylpeptidase 4 negatively regulates colony-stimulating factor activity and stress hematopoiesis. Nat Med 18:96–1786Google Scholar
  51. 51.
    Struyf S et al (1999) CD26/dipeptidyl-peptidase IV down-regulates the eosinophil chemotactic potency, but not the anti-HIV activity of human eotaxin by affecting its interaction with CC chemokine receptor 3. J Immunol 162:9–4903Google Scholar
  52. 52.
    Manns J et al (2007) The allergy-associated chemokine receptors CCR3 and CCR5 can be inactivated by the modified chemokine NNY-CCL11. Allergy 62:17–24PubMedCrossRefGoogle Scholar
  53. 53.
    Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368:705–1696CrossRefGoogle Scholar
  54. 54.
    Inzucchi SE, McGuire DK (2008) New drugs for the treatment of diabetes: part II: Incretin-based therapy and beyond. Circulation 117:84–574CrossRefGoogle Scholar
  55. 55.
    Raz I et al (2006) Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy in patients with type 2 diabetes mellitus. Diabetologia 49:71–2564CrossRefGoogle Scholar
  56. 56.
    Lambeir AM, Scharpe S, De Meester I (2008) DPP-4 inhibitors for diabetes–what next? Biochem Pharmacol 76:43–1637CrossRefGoogle Scholar
  57. 57.
    Jose T, Inzucchi SE (2012) Cardiovascular effects of the DPP-4 inhibitors. Diab Vasc Dis Res 9:16–109CrossRefGoogle Scholar
  58. 58.
    Pattzi HM et al (2010) Dutogliptin, a selective DPP-4 inhibitor, improves glycaemic control in patients with type 2 diabetes: a 12-week, double-blind, randomized, placebo-controlled, multicentre trial. Diabetes Obes Metab 12:55–348CrossRefGoogle Scholar
  59. 59.
    Pratley RE, Salsali A (2007) Inhibition of DPP-4: a new therapeutic approach for the treatment of type 2 diabetes. Curr Med Res Opin 23:919–931PubMedCrossRefGoogle Scholar
  60. 60.
    Sell H et al (2013) Adipose Dipeptidyl peptidase-4 and obesity. Correlation with insulin resistance and depot-specific release from adipose tissue in vivo and in vitro 36:4083–4090Google Scholar
  61. 61.
    Lamers D et al (2011) Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes 60:1917–1925PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Pacheco R et al (2005) CD26, adenosine deaminase, and adenosine receptors mediate costimulatory signals in the immunological synapse. Proc Natl Acad Sci USA 102:9583–9588PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Schrader WP et al (1990) Characterization of the adenosine deaminase-adenosine deaminase complexing protein binding reaction. J Biol Chem 265:8–19312Google Scholar
  64. 64.
    Focosi D et al (2008) Conditioning response to granulocyte colony-stimulating factor via the dipeptidyl peptidase IV-adenosine deaminase complex. J Leukoc Biol 84:331–337PubMedCrossRefGoogle Scholar
  65. 65.
    Lessard J et al (2015) Characterization of dedifferentiating human mature adipocytes from the visceral and subcutaneous fat compartments: fibroblast-activation protein alpha and dipeptidyl peptidase 4 as major components of matrix remodeling. PLoS ONE 10:e0122065PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Rosmaninho-Salgado J et al (2012) Dipeptidyl-peptidase-IV by cleaving neuropeptide Y induces lipid accumulation and PPAR-γ expression. Peptides 37:49–54PubMedCrossRefGoogle Scholar
  67. 67.
    Chinda K et al (2013) Cardioprotective effect of dipeptidyl peptidase-4 inhibitor during ischemia–reperfusion injury. Int J Cardiol 167:451–457PubMedCrossRefGoogle Scholar
  68. 68.
    Bhatt DL, Cavender MA (2014) Do dipeptidyl peptidase-4 inhibitors increase the risk of heart failure? JACC Heart Fail 2:583–585PubMedCrossRefGoogle Scholar
  69. 69.
    Scirica BM et al (2013) Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 369:1317–1326PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    White WB et al (2013) Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 369:1327–1335PubMedCrossRefGoogle Scholar
  71. 71.
    Ban K et al (2008) Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and–independent pathways. Circulation 117:2340–2350PubMedCrossRefGoogle Scholar
  72. 72.
    Wei Y, Mojsov S (1996) Distribution of GLP-1 and PACAP receptors in human tissues. Acta Physiol Scand 157:355–357PubMedCrossRefGoogle Scholar
  73. 73.
    Sokos GG et al (2006) Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Cardiac Fail 12:694–699CrossRefGoogle Scholar
  74. 74.
    Best JH et al (2011) Risk of cardiovascular disease events in patients with type 2 diabetes prescribed the glucagon-like peptide 1 (GLP-1) receptor agonist exenatide twice daily or other glucose-lowering therapies. A retrospective analysis of the LifeLink database 34:90–95Google Scholar
  75. 75.
    Fadini GP et al (2010) The oral dipeptidyl peptidase-4 inhibitor sitagliptin increases circulating endothelial progenitor cells in patients with type 2 diabetes. Possible role of stromal-derived factor-1α. 33:1607–1609Google Scholar
  76. 76.
    Kuhn M (2012) Endothelial actions of atrial and B-type natriuretic peptides. Br J Pharmacol 166:522–531PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Kawakami R et al (2004) Overexpression of brain natriuretic peptide facilitates neutrophil infiltration and cardiac matrix metalloproteinase-9 expression after acute myocardial infarction. Circulation 110:12–3306CrossRefGoogle Scholar
  78. 78.
    Krawczyk M, Bonfrate L, Portincasa P (2010) Nonalcoholic fatty liver disease. Best Pract Res Clin Gastroenterol 24:695–708PubMedCrossRefGoogle Scholar
  79. 79.
    Starley BQ, Calcagno CJ, Harrison SA (2010) Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection. Hepatology 51:1820–1832PubMedCrossRefGoogle Scholar
  80. 80.
    Itou M et al (2013) Dipeptidyl peptidase-4: a key player in chronic liver disease. World J Gastroenterol 19:306–2298CrossRefGoogle Scholar
  81. 81.
    Miyazaki M et al (2012) Increased hepatic expression of dipeptidyl peptidase-4 in non-alcoholic fatty liver disease and its association with insulin resistance and glucose metabolism. Mol Med Rep 5:33–729Google Scholar
  82. 82.
    Kaji K et al (2014) Dipeptidyl peptidase-4 inhibitor attenuates hepatic fibrosis via suppression of activated hepatic stellate cell in rats. J Gastroenterol 49:481–491PubMedCrossRefGoogle Scholar
  83. 83.
    Maiztegui B et al (2011) Sitagliptin prevents the development of metabolic and hormonal disturbances, increased β-cell apoptosis and liver steatosis induced by a fructose-rich diet in normal rats. Clin Sci 120:73–80PubMedCrossRefGoogle Scholar
  84. 84.
    Itou M et al (2012) Dipeptidyl peptidase IV inhibitor improves insulin resistance and steatosis in a refractory nonalcoholic fatty liver disease patient: a case report. Case Rep Gastroenterol 6:538–544PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Iwasaki T et al (2011) Sitagliptin as a novel treatment agent for non-alcoholic Fatty liver disease patients with type 2 diabetes mellitus. Hepatogastroenterology 58:5–2103CrossRefGoogle Scholar
  86. 86.
    Liu L et al (2014) Dipeptidyl peptidase-4 (DPP-4): localization and activity in human and rodent islets. Biochem Biophys Res Commun 453:398–404PubMedCrossRefGoogle Scholar
  87. 87.
    Omar BA et al (2014) Dipeptidyl peptidase 4 (DPP-4) is expressed in mouse and human islets and its activity is decreased in human islets from individuals with type 2 diabetes. Diabetologia 57:1876–1883PubMedCrossRefGoogle Scholar
  88. 88.
    Shah P et al (2013) The DPP-4 inhibitor linagliptin restores β-cell function and survival in human isolated islets through GLP-1 stabilization. J Clin Endocrinol Metab 98:E1163–E1172PubMedCrossRefGoogle Scholar
  89. 89.
    Duttaroy A et al (2011) The DPP-4 inhibitor vildagliptin increases pancreatic beta cell mass in neonatal rats. Eur J Pharmacol 650:703–707PubMedCrossRefGoogle Scholar
  90. 90.
    Takeda Y et al (2012) Reduction of both beta cell death and alpha cell proliferation by dipeptidyl peptidase-4 inhibition in a streptozotocin-induced model of diabetes in mice. Diabetologia 55:404–412PubMedCrossRefGoogle Scholar
  91. 91.
    Han SJ et al (2011) Effect of sitagliptin plus metformin on β-cell function, islet integrity and islet gene expression in Zucker diabetic fatty rats. Diabetes Res Clin Pract 92:213–222PubMedCrossRefGoogle Scholar
  92. 92.
    Foley JE et al (2011) Beta cell function following 1 year vildagliptin or placebo treatment and after 12 week washout in drug-naive patients with type 2 diabetes and mild hyperglycaemia: a randomised controlled trial. Diabetologia 54:1985–1991PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Mari A et al (2008) Characterization of the influence of vildagliptin on model-assessed β-cell function in patients with type 2 diabetes and mild hyperglycemia. J Clin Endocrinol Metab 93:103–109PubMedCrossRefGoogle Scholar
  94. 94.
    Leibowitz G et al (2015) Impact of treatment with saxagliptin on glycaemic stability and β-cell function in the SAVOR-TIMI 53 study. Diabetes Obes Metab 17:487–494PubMedCrossRefGoogle Scholar
  95. 95.
    Rungby J (2009) Inhibition of dipeptidyl peptidase 4 by BI-1356, a new drug for the treatment of beta-cell failure in type 2 diabetes. Expert Opin Investig Drugs 18:8–835CrossRefGoogle Scholar
  96. 96.
    Friedrich C et al (2013) Pharmacokinetic and pharmacodynamic evaluation of linagliptin in African American patients with type 2 diabetes mellitus. Br J Clin Pharmacol 76:54–445CrossRefGoogle Scholar
  97. 97.
    Van Raalte DH et al (2014) The effect of alogliptin and pioglitazone combination therapy on various aspects of beta-cell function in patients with recent-onset type 2 diabetes. Eur J Endocrinol 170:74–565Google Scholar
  98. 98.
    Choi HY et al (2015) Evaluation of the pharmacokinetics of the DPP-4 inhibitor gemigliptin when coadministered with rosuvastatin or irbesartan to healthy subjects. Curr Med Res Opin 31:41–229CrossRefGoogle Scholar
  99. 99.
    Terra SG et al (2011) A dose-ranging study of the DPP-IV inhibitor PF-734200 added to metformin in subjects with type 2 diabetes. Exp Clin Endocrinol Diabetes 119:7–401CrossRefGoogle Scholar
  100. 100.
    Vardarli I et al (2011) Inhibition of DPP-4 with vildagliptin improved insulin secretion in response to oral as well as “isoglycemic” intravenous glucose without numerically changing the incretin effect in patients with type 2 diabetes. J Clin Endocrinol Metab 96:54–945CrossRefGoogle Scholar
  101. 101.
    Devin JK et al (2014) Dipeptidyl-peptidase 4 inhibition and the vascular effects of glucagon-like peptide-1 and brain natriuretic peptide in the human forearm. J Am Heart Assoc 3Google Scholar
  102. 102.
    Wang B, Sun J, Kitamoto S (2006) Cathepsin S controls angiogenesis and tumor growth via matrix-derived angiogenic factors. J Biol Chem 281:6020–6029PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Lafarge JC et al (2014) Cathepsin S inhibition lowers blood glucose levels in mice. Diabetologia 57:1674–1683PubMedCrossRefGoogle Scholar
  104. 104.
    Oltman CL et al (2009) Treatment of Zucker diabetic fatty rats with AVE7688 improves vascular and neural dysfunction. Diabetes Obes Metab 11:223–233PubMedCrossRefGoogle Scholar
  105. 105.
    Hadi ARH et al (2007) Endothelial dysfunction in diabetes mellitus. Vascul Health Risk Manag 3:853–876Google Scholar
  106. 106.
    Nangle MR, Cotter MA, Cameron NE et al (2006) The calpain inhibitor, A-705253, corrects penile nitrergic nerve dysfunction in diabetic mice. Eur J Pharmacol 538(1–3):148–153Google Scholar
  107. 107.
    Muller M, Trocme C, Lardy B, Morel F, Halimi S, Benhamou PY (2008) Matrix metalloproteinases and diabetic foot ulcers: the ratio of MMP-1 to TIMP-1 is a predictor of wound healing. Diabetic Med 25(4):419–426PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Caseiro Armando et al (2012) Protease profiling of different biofluids in type 1 diabetes mellitus. Clin Biochem 45:1613–1619PubMedCrossRefGoogle Scholar
  109. 109.
    Nowak C et al (2016) Protein biomarkers for insulin resistance and type 2 diabetes risk in two large community cohorts. Diabetes 65:276–284PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Shatadal Ghosh
    • 1
  • Bhawna Pandey
    • 1
  • Parames C. Sil
    • 1
    Email author
  1. 1.Division of Molecular MedicineBose InstituteKolkataIndia

Personalised recommendations