Proteolytic Networks at the Crossroads of Cancer Cell Life and Death: Cancer Stem Cell Deciding Cell Fate

  • Poulami Khan
  • Shruti Banerjee
  • Apoorva Bhattacharya
  • Dipanwita Dutta Chowdhury
  • Apratim Dutta
  • Tanya DasEmail author


Over the years, proteases have been implicated in the development of tumors. The proteolytic network, which critically modulates the functioning of a normal cell, is often dysregulated in cancers. In the recent past, the identification of a subpopulation of cancer cells, termed as cancer stem cells (CSCs), has helped gain a better understanding of the complex mechanisms involved in cancer development, progression, as well as recurrence. In this context, it is of considerable importance to comprehend the pivotal role of proteases in regulating the fate of cancer cells via the CSCs. In fact, the proteolytic network influences cancer cell’s fate via CSC and its associated niche, which coordinates the functions of CSCs. In this chapter, we have emphasized on the dynamic role displayed by the proteases in regulating numerous steps of tumorigenesis commencing from tumor initiation, angiogenesis, invasion and metastasis. Apart from this, CSCs also execute a survival mechanism with the help of proteases, upon induction of apoptosis. We have also revisited the mechanisms underlying the contribution of proteases in tumor drug resistance, which ultimately leads to cancer relapse, and the role of CSCs in the same. Similarly, proteases are also intricately involved in inflammation and immune surveillance of CSCs. Given the important role of proteases in carcinogenesis, further development of antiprotease therapeutics may enable better treatment procedures and minimize the risk of recurrence. This chapter has, therefore, epitomized the complex crosstalk involving proteases, CSCs and its niche.


Angiogenesis Cancer stem cells Drug resistance Immune surveillance Metastasis Microenvironment Proteases 


  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386PubMedCrossRefGoogle Scholar
  2. 2.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRefGoogle Scholar
  3. 3.
    Kreso A, Dick JE (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14(3):275–291PubMedCrossRefGoogle Scholar
  4. 4.
    Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumors: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Kise K, Kinugasa-Katayama Y, Takakura N (2016) Tumor microenvironment for cancer stem cells. Adv Drug Deliv Rev 99:197–205PubMedCrossRefGoogle Scholar
  6. 6.
    Pietras K, Ostman A (2010) Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 316:1324–1331PubMedCrossRefGoogle Scholar
  7. 7.
    Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Raza A, Franklin MJ, Dudek AZ (2010) Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am J Hematol 85:593–598PubMedCrossRefGoogle Scholar
  9. 9.
    Mao Y, Keller ET, Garfield DH et al (2013) Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev 32:303–315PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Hewitt R, Danø K (1996) Stromal cell expression of components of matrix-degrading protease systems in human cancer. Enzyme Protein 49:163–173PubMedCrossRefGoogle Scholar
  11. 11.
    Mason SD, Joyce JA (2011) Proteolytic networks in cancer. Trends Cell Biol 21:228–237PubMedCrossRefGoogle Scholar
  12. 12.
    Lopez-Otin C, Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J BiolChem 283:30433–30437Google Scholar
  13. 13.
    López-Otín C, Hunter T (2010) The regulatory crosstalk between kinases and proteases in cancer. Nat Rev Cancer 10:278–292PubMedCrossRefGoogle Scholar
  14. 14.
    Yang Y, Hao Hong H, Yin Zhang Y et al (2009) Molecular imaging of proteases in cancer. Cancer Growth Metastasis 2:13–27PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Duffy MJ (1996) Proteases as prognostic markers in cancer. Clin Cancer Res 2:613–618PubMedPubMedCentralGoogle Scholar
  16. 16.
    Zucker S, Cao J, Chen WT (2000) Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 19:6642–6650CrossRefPubMedGoogle Scholar
  17. 17.
    Lopez-Otin C, Overall CM (2002) Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol 3:509–519PubMedCrossRefGoogle Scholar
  18. 18.
    Rakashanda S, Rana F, Rafiq S et al (2012) Role of proteases in cancer: a review. Biotechnol Mol Biol Rev 7:90–101CrossRefGoogle Scholar
  19. 19.
    Quesada V, Ordóñez GR, Sánchez LM et al (2009) The Degradome database: mammalian proteases and diseases of proteolysis. Nucleic Acids Res 37:D239–D243PubMedCrossRefGoogle Scholar
  20. 20.
    Puente XS, Sánchez LM, Overall CM et al (2003) Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 4:544–558PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Choi KY, Swierczewska M, Lee S et al (2012) Protease-activated drug development. Theranostics 2:156–178Google Scholar
  22. 22.
    Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5:785–799CrossRefPubMedGoogle Scholar
  23. 23.
    López-Otín C, Matrisian LM (2007) Emerging roles of proteases in tumor suppression. Nat Rev Cancer 7:800–808PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Schroter F, Adjaye J (2014) The proteasome complex and the maintenance of pluripotency: sustain the fate by mopping up? Stem Cell Res Ther 5:24PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Rape M, Jentsch S (2002) Taking a bite: proteasomal protein processing. Nature Cell Bio 4:E113–E116CrossRefGoogle Scholar
  26. 26.
    Yasutaka O, Keiichi IN (2012) UPS delivers pluripotency. Cell Stem Cell 11:728–730CrossRefGoogle Scholar
  27. 27.
    Pan J, Zhang Q, Wang Y et al (2010) 26S Proteasome activity is down-regulated in lung cancer stem-like cells propagated in vitro. PLoS ONE 5:e13298PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Chinchar E, Makey KL, Gu, JW (2014) Sunitinib significantly suppresses the proliferation, migration, apoptosis resistance, tumor angiogenesis and growth of triple-negative breast cancers but increases breast cancer stem cells. Vasc Cell. 6Google Scholar
  29. 29.
    Hill RP, Marie-Egyptienne DT, Hedley DW (2009) Cancer stem cells, hypoxia and metastasis. Semin Radiat Oncol 19:106–111PubMedCrossRefGoogle Scholar
  30. 30.
    Catalano V, Turdo A, Di Franco S et al (2013) Tumor and its microenvironment: a synergistic interplay. Semin Cancer Biol 23:522–532PubMedCrossRefGoogle Scholar
  31. 31.
    Han L, Shi S, Gong T et al (2013) Cancer stem cells: therapeutic implications and perspectives in cancer therapy. Acta Pharm Sin B 3:65–75CrossRefGoogle Scholar
  32. 32.
    Clarke MF, Dick JE, Dirks PB (2006) Cancer stem cells—perspectives on current status and future directions: ACCR workshop on cancer stem cells. Cancer Res 66:9339–9344PubMedCrossRefGoogle Scholar
  33. 33.
    Baker M (2008) Cancer stem cells, becoming common. Nat Rep Stem Cells. doi: 10.1038/stemcells.2008.153CrossRefGoogle Scholar
  34. 34.
    Seton-Rogers S (2011) Cancer stem cells. VEGF promotes stemness. Nat Rev Cancer 11:831PubMedCrossRefGoogle Scholar
  35. 35.
    Tang S, Xiang T, Huang S et al (2016) Ovarian cancer stem-like cells differentiate into endothelial cells and participate in tumor angiogenesis through autocrine CCL5 signaling. Cancer Lett 376:137–147PubMedCrossRefGoogle Scholar
  36. 36.
    Bussolati B, Grange C, Sapino A et al (2009) Endothelial cell differentiation of human breast tumour stem/progenitor cells. J Cell Mol Med 13:309–319PubMedCrossRefGoogle Scholar
  37. 37.
    Kumar D, Kumar S, Gorain M et al (2016) Notch1-MAPK signaling axis regulates CD133+ cancer stem cell-mediated melanoma growth and angiogenesis. J Invest Dermatol pii: S0022-202X(16)32232-1Google Scholar
  38. 38.
    Saha S, Mukherjee S, Mazumdar M et al (2014) Mithramycin A sensitizes therapy-resistant breast cancer stem cells toward genotoxic drug doxorubicin. Transl Res 165:558–577PubMedCrossRefGoogle Scholar
  39. 39.
    Saha S, Mukherjee S, Khan P et al (2016) Aspirin suppress the acquisition of chemoresistance in breast cancer by disrupting an NFкB-IL6 signaing axis responsible for the generation of Cancer Stem Cells. Cancer Res 76:2000–2012PubMedCrossRefGoogle Scholar
  40. 40.
    Mukherjee S, Mazumdar M, Chakraborty S et al (2014) Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/β-catenin negative feedback loop. Stem Cell Res Ther 5:116PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Mukherjee S, Manna A, Bhattacharjee P et al (2016) Non-migratory tumorigenic intrinsic cancer stem cells ensure breast cancer metastasis by generation of CXCR4+ migrating cancer stem cells. Oncogene. doi: 10.1038/onc.2016.26CrossRefPubMedGoogle Scholar
  42. 42.
    Tang DG (2012) Understanding cancer stem cell heterogeneity and plasticity. Cell Res 22:457–472PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Chakraborty C, Chin KY, Das S (2016) miRNA-regulated cancer stem cells: understanding the property and the role of miRNA in carcinogenesis. Tumor Biol. doi: 10.1007/s13277-016-5156-1CrossRefPubMedGoogle Scholar
  44. 44.
    Korkaya H, Liu S, Wicha MS (2006) Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest 121:3804–3809CrossRefGoogle Scholar
  45. 45.
    Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079PubMedCrossRefGoogle Scholar
  46. 46.
    Fessler E, Dijkgraaf FE, De Sousa E, Melo F et al (2013) Cancer stem cell dynamics in tumor progression and metastasis: is the microenvironment to blame? Cancer Lett 34:97–104CrossRefGoogle Scholar
  47. 47.
    Bennewith KL, Durand RE (2004) Quantifying transient hypoxia in human tumorxenografts by flow cytometry. Cancer Res 64:6183–6189PubMedCrossRefGoogle Scholar
  48. 48.
    Wong DJ, Liu H, Ridky TW et al (2008) Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2:333–344PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Vermeulen L, De Sousa E, Melo F, van der Heijden M (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12:468–476PubMedCrossRefGoogle Scholar
  50. 50.
    Ohishi K, Varnum-Finney B, Bernstein ID (2002) The Notch pathway: modulation of cell fate decisions in hematopoiesis. Int J Hematol 75:449–459Google Scholar
  51. 51.
    Chanmee T, Ontong P, Mochizuki N et al (2014) Excessive hyaluronan production promotes acquisition of cancer stem cell signatures through the coordinated regulation of Twist and the transforming growth factor β (TGF-β)-Snail signaling axis. J BiolChem 289:26038–26056Google Scholar
  52. 52.
    Kitamura T, Qian BZ, Pollard JW (2015) Immune cell promotion of metastasis. Nat Rev Immunol 15:73–86PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49–61PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Siefert SA, Sarkar R (2012) Matrix metalloproteinases in vascular physiology and disease. Vascular 20:210–216PubMedCrossRefGoogle Scholar
  55. 55.
    Kessenbrock K, Dijkgraaf GJ, Lawson DA et al (2013) A role for matrix metalloproteinases in regulating mammary stem cell function via the Wnt signaling pathway. Cell Stem Cell 13:300–313PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Chen J (2012) Regulation of tumor initiation and metastatic progression by Eph receptor tyrosine kinases. Adv Cancer Res 114:1–20PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hagerling C, Casbon AJ, Werb Z (2015) Balancing the innate immune system in tumor development. Trends Cell Biol 25:214–220PubMedCrossRefGoogle Scholar
  59. 59.
    Boumahdi S, Driessens G, Lapouge G (2014) SOX2 controls tumor initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature 511:246–250PubMedCrossRefGoogle Scholar
  60. 60.
    Plaks V, Kong N, Werb Z (2015) The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells. Cell Stem Cell 16:225–238PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Chen DY, Liu H, Takeda S et al (2010) Taspase1 functions as a non-oncogene addiction protease that coordinates cancer cell proliferation and apoptosis. Cancer Res 70:5358–5367PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Hsieh JJ, Cheng EH, Korsmeyer SJ (2003) Taspase1: a threonine aspartase required for cleavage of MLL and proper HOX gene expression. Cell 115:293–303PubMedCrossRefGoogle Scholar
  63. 63.
    Wünsch D, Hahlbrock A, Jung S et al (2016) Taspase1: a ‘misunderstood’ protease with translational cancer relevance. Oncogene 35:3351–3364PubMedCrossRefGoogle Scholar
  64. 64.
    Kumar S, Kulkarni R, Sen S (2016) Cell motility and ECM proteolysis regulate tumor growth and tumor relapse by altering the fraction of cancer stem cells and their spatial scattering. PhysBiol 13:036001Google Scholar
  65. 65.
    Sevenich L, Joyce JA (2014) Pericellular proteolysis in cancer. Genes Dev 28:2331–2347PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Muthukkaruppan VR, Kubai L, Auerbach R (1982) Tumor-induced neovascularization in the mouse eye. J Natl Cancer Inst 69:699–708PubMedGoogle Scholar
  68. 68.
    Holmgren L, O’Reilly MS, Folkman J (1995) Dormancy of micrometastases: balance proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1:149–153PubMedCrossRefGoogle Scholar
  69. 69.
    Parangi S, O’Reilly M, Christofori G et al (1996) Angiogenesis therapy of transgenic mice impairs de novo tumor growth. Proc Natl Acad Sci USA 93:2002–2007PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Dameron KM, Volpert OV, Tainsky MA et al (1994) Control of angiogenesis in fibroblasts by p53 regulation of thorombospondin-1. Science 265:1582–1584PubMedCrossRefGoogle Scholar
  71. 71.
    Gu JW, Rizzo P, Pannuti A et al (2012) Notch signals in the endothelium and cancer “stem-like” cells: opportunities for cancer therapy. Vascular Cell 4:7PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Matsuda S, Yan T, Mizutani A et al (2014) Cancer stem cells maintain a hierarchy of differentiation by creating their niche. Int J Cancer 135:27–36PubMedCrossRefGoogle Scholar
  73. 73.
    Folkman J, Klagsbrun M (1987) Angiogenic factors. Science 235:442–447PubMedCrossRefGoogle Scholar
  74. 74.
    Kiba A, Yabana N, Shibuya M (2003) A set of loop-1 and -3 structures in the novel VEGF family member, VEGF-ENZ-7, is essential for the activation of VEGFR-2 signaling. J Biol Chem 278:13453–13461PubMedCrossRefGoogle Scholar
  75. 75.
    Bao S, Wu Q, Sathornsumetee S et al (2006) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66:7843–7848PubMedCrossRefGoogle Scholar
  76. 76.
    Hadjimichael C, Chanoumidou K, Papadopoulou N (2015) Common stemness regulators of embryonic and cancer stem cells. World J Stem Cells 7:1150–1184PubMedPubMedCentralGoogle Scholar
  77. 77.
    Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174CrossRefPubMedGoogle Scholar
  78. 78.
    Yana I, Weiss SJ (2000) Regulation of membrane type-1 matrix metalloproteinase activation by proproteinconvertases. Mol Biol Cell 11:2387–2401PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Handsley MM, Edwards DR (2005) Metalloproteinases and their inhibitors in tumor angiogenesis. Int J Cancer 115:849–860PubMedCrossRefGoogle Scholar
  80. 80.
    Kajita M, Itoh Y, Chiba T et al (2001) Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol 153:893–904PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Seiki M (2003) Membrane-type 1 matrix metalloproteinase: a key enzyme for tumor invasion. Cancer Lett 194:1–11PubMedCrossRefGoogle Scholar
  82. 82.
    Brooks PC, Stromblad S, Sanders LC et al (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85:683–693PubMedCrossRefGoogle Scholar
  83. 83.
    Shibuya M (2011) Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2:1097–1105PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Brauer R, Beck IM, Roderfeld M et al (2011) Matrix metalloproteinase-19 inhibits growth of endothelial cells by generating angiostatin-like fragments from plasminogen. BMC Biochem 12:38PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Felbor U, Dreier L, Bryant RA et al (2000) Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J 19:1187–1194PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Li S, Huang NF, Hsu S (2005) Mechanotransduction in endothelial cell migration. J CellBiochem 96:1110–1126Google Scholar
  88. 88.
    Iivanainen E, Kähäri VM, Heino J et al (2003) Endothelial cell-matrix interactions. Microsc Res Tech 60:13–22PubMedCrossRefGoogle Scholar
  89. 89.
    Du R, Lu KV, Petritsch C (2008) HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13:206–220PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Wojtukiewicz MZ, Sierko E, Klement P et al (2001) The hemostatic system and angiogenesis in malignancy. Neoplasia 3:371–384PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Qiao L, Liang N, Zhang J et al (2015) Advanced research on vasculogenic mimicry in cancer. J Cell Mol Med 19:315–326PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Zijl FV, Krupitza G, Mikulits W (2011) Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res 728:23–34PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Iqbal W, Alkarim S, AlHejin A et al (2016) Targeting signal transduction pathways of cancer stem cells for therapeutic opportunities of metastasis. Oncotarget. doi: 10.18632/oncotarget.10942CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Chabottaux V, Ricaud S, Host L et al (2009) Membrane-type 4 matrix metalloproteinase (MT4-MMP) induces lung metastasis by alteration of primary breast tumor vascular architecture. J Cell Mol Med 13:4002–4013PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Klimstra D, Reinheckel T, Peters C et al (2006) Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev 20:543–556PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Noë V, Fingleton B, Jacobs K et al (2001) Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci 114:111–118PubMedGoogle Scholar
  97. 97.
    Najy AJ, Day KC, Day ML (2008) Theectodomain shedding of E-cadherin by ADAM15 supports ErbB receptor activation. J Biol Chem 283:18393–18401PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Grabowska MM, Sandhu B, Day ML (2012) EGF promotes the shedding of soluble E-cadherin in an ADAM10-dependent manner in prostate epithelial cells. Cell Signal 24:532–538PubMedCrossRefGoogle Scholar
  99. 99.
    Juncker-Jensen A, Deryugina EI, Rimann I (2013) Tumor MMP-1 activates endothelial PAR1 to facilitate vascular intravasation and metastatic dissemination. Cancer Res 73:4196–4211PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Feng S, Cen J, Huang Y (2011) Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins. PLoS ONE 6:e20599PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Tsai JH, Yang J (2013) Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev 27:2192–2206PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Mani SA, Guo W, Liao MJ (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Nishida C, Kusubata K, Tashiro Y et al (2011) MT1-MMP plays a critical role in hematopoiesis by regulating HIF-mediated chemokine/cytokine gene transcription within niche cells. Blood 119:5405–5416CrossRefGoogle Scholar
  104. 104.
    Wang Z, von Au A, Schnölzer M et al (2016) CD44v6-competent tumorexosomes promote motility, invasion and cancer-initiating cell marker expression. Oncotarget. doi: 10.18632/oncotarget.10580
  105. 105.
    D’Eliseo D, Di Rocco G, Loria R et al (2016) Epitelial-to-mesenchimal transition and invasion are upmodulated by tumor-expressed granzyme B and inhibited by docosahexaenoic acid in human colorectal cancer cells. J ExpClin Cancer Res. doi: 10.1186/s13046-016-0302-6
  106. 106.
    Gao Y, Feng J, Wu L et al (2015) Expression and pathological mechanism of MMP-9 and HIF-2α in CD133(+) lung cancer stem cells. Zhonghua Yi XueZaZhi 95:2607–2611Google Scholar
  107. 107.
    Talukdar S, Das SK, Pradhan AK, Emdad et al (2016) Novel function of MDA-9/Syntenin (SDCBP) as a regulator of survival and stemness in glioma stem cells. Oncotarget. doi: 10.18632/oncotarget.10851
  108. 108.
    Ito K, Ito K (2016) Metabolism and the control of cell fate decisions and stem cell renewal. Annu Rev Cell Dev Biol. doi: 10.1146/annurev-cellbio-111315-125134
  109. 109.
    Baxter RC (2014) IGF binding proteins in cancer: mechanistic and clinical insights. Nat Rev Cancer 14:329–341PubMedCrossRefGoogle Scholar
  110. 110.
    Miyamoto S, Yano K, Sugimoto S et al (2004) Matrix metalloproteinase-7 facilitates insulin-like growth factor bioavailability through its proteinase activity on insulin-like growth factor binding protein 3. Cancer Res 64:665–671PubMedCrossRefGoogle Scholar
  111. 111.
    Hemers E, Duval C, McCaig C et al (2005) Insulin-like growth factor binding protein-5 is a target of matrix metalloproteinase-7: implications for epithelial-mesenchymalsignaling. Cancer Res 65:7363–7369PubMedCrossRefGoogle Scholar
  112. 112.
    Mochizuki S, Shimoda M, Shiomi T et al (2004) ADAM28 is activated by MMP-7 (matrilysin-1) and cleaves insulin-like growth factor binding protein-3. Bio Chem Biophys Res Commun 315:79–84Google Scholar
  113. 113.
    Sylvain MG, Thorsten M, Priya D et al (2010) ADAM17 is regulated by a rapid and reversible mechanism that controls access to its catalytic site. J Cell Sci 123:3913–3922CrossRefGoogle Scholar
  114. 114.
    Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14:163–176PubMedPubMedCentralGoogle Scholar
  115. 115.
    Lahiry L, Saha B, Chakraborty J et al (2010) Theaflavins target Fas/caspase-8 and Akt/pBad pathways to induce apoptosis in p53-mutated human breast cancer cells. Carcinogenesis 31:259–268PubMedCrossRefGoogle Scholar
  116. 116.
    Kessenbrock K, Wang WY, Werb Z (2015) Matrix metalloproteinases in stem cell regulation and cancer. Matrix Biol 44:184–190PubMedCrossRefGoogle Scholar
  117. 117.
    Nasri I, Bonnet D, Zwarycz B et al (2016) PAR2-dependent activation of GSK3β regulates the survival of colon stem/progenitor cells. Am J Physiol Gastrointest Liver Physiol 311:G221–G236PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Amoury M, Kolberg K, Pham AT et al (2016) Granzyme B-based cytolytic fusion protein targeting EpCAM specifically kills triple negative breast cancer cells in vitro and inhibits tumor growth in a subcutaneous mouse tumor model. Cancer Lett 372:201–209PubMedCrossRefGoogle Scholar
  119. 119.
    Longley DB, Johnston PG (2005) Molecular mechanisms of drug resistance. J Pathol 205:275–292PubMedCrossRefGoogle Scholar
  120. 120.
    Mohanty S, Saha S, Md D, Hossain S (2014) ROS-PIASγ cross talk channelizes ATM signaling from resistance to apoptosis during chemosensitization of resistant tumors. Cell Death Dis 5:e1021PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Dean M, Fojo T, Bates S (2005) Tumor stem cells and drug resistance. Nat Rev Cancer 5:275–284PubMedCrossRefGoogle Scholar
  122. 122.
    Liu G, Yuan X, Zeng Z et al (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Eckford PD, Sharom FJ (2009) ABC efflux pump-based resistance to chemotherapy drugs. Chem Rev 109:2989–3011PubMedCrossRefGoogle Scholar
  124. 124.
    Scharenberg CW, Harkey MA, Torok-Storb B (2002) The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 99:507–512PubMedCrossRefGoogle Scholar
  125. 125.
    Wang J, Sullenger BA, Rich JN (2012) Notch signaling in cancer stem cells. Adv Exp Med Biol 727:174–185PubMedCrossRefGoogle Scholar
  126. 126.
    Wang Z, Da Silva TG, Jin K et al (2014) Notch signaling drives stemness and tumorigenicity of esophageal adenocarcinoma. Cancer Res 74:6364–6374PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    D’Angelo RC, Ouzounova M, Davis A et al (2015) Notch reporter activity in breast cancer cell lines identifies a subset of cells with stem cell activity. Mol Cancer Ther 14:779–787PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Theys J, Yahyanejad S, Habets R et al (2013) High Notch activity induces radiation resistance in non small cell lung cancer. Radiother Oncol1 08:440–445PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Yahyanejad S, Theys J, Vooijs M (2016) Targeting Notch to overcome radiation resistance. Oncotarget 7:7610–7628PubMedPubMedCentralGoogle Scholar
  130. 130.
    Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98:1777–1785PubMedCrossRefGoogle Scholar
  131. 131.
    Lagadec C, Vlashi E, Alhiyari Y et al (2013) Radiation-induced Notch signaling in breast cancer stem cells. Int J Radiat Oncol Biol Phys 87:609–618PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Mamaeva V, Niemi R, Beck M et al (2016) Inhibiting Notch activity in breast cancer stem cells by glucose functionalized nanoparticles carrying γ-secretase Inhibitors. Mol Ther 24:926–936PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Austin KM, Covic L, Kuliopulos A (2013) Matrix metalloproteases and PAR1 activation. Blood 121:431–439PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Fujimoto D, Ueda Y, Hirono Y et al (2015) PAR1 participates in the ability of multidrug resistance and tumorigenesis by controlling Hippo-YAP pathway. Oncotarget 6:34788–34799PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    He YC, Zhou FL, Shen Y et al (2014) Apoptotic death of cancer stem cells for cancer therapy. Int J MolSci 15:8335–8351CrossRefGoogle Scholar
  136. 136.
    Inohara N, Nuñez G (2001) The NOD: a signaling module that regulates apoptosis and host defense against pathogens. Oncogene 20:6473–6481PubMedCrossRefGoogle Scholar
  137. 137.
    Cecconi F, Alvarez-Bolado G, Meyer BI et al (1998) Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94:727–737PubMedCrossRefGoogle Scholar
  138. 138.
    Yoshida H, Kong YY, Yoshida R et al (1998) Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94:739–750PubMedCrossRefGoogle Scholar
  139. 139.
    Yu CJ, Ou JH, Wang ML et al (2015) Elevated survivin mediated multidrug resistance and reduced apoptosis in breast cancer stem cells. J BUON 20:1287–1294PubMedGoogle Scholar
  140. 140.
    Yan H, Tong J, Lin X et al (2015) Effect of the WWOX gene on the regulation of the cell cycle and apoptosis in human ovarian cancer stem cells. Mol Med Rep 12:1783–1788PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Jinesh GG, Choi W, Shah JB et al (2013) Blebbishields, the emergency program for cancer stem cells: sphere formation and tumorigenesis after apoptosis. Cell Death Differ 20:382–395PubMedCrossRefGoogle Scholar
  142. 142.
    Lu Y, Zhang C, Li Q et al (2015) Inhibitory effect of salinomycin on human breast cancer cells MDA-MB-231 proliferation through Hedgehog signaling pathway. Zhonghua Bing Li XueZaZhi 44:395–398Google Scholar
  143. 143.
    Mantovani A, Allavena P, Sica A et al (2008) Cancer-related inflammation. Nature 454(436):444Google Scholar
  144. 144.
    Lowe DB, Storkus WJ (2011) Chronic inflammation and immunologic-based constraints in malignant disease. Immunotherapy 3:1265–1274PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Colotta F, Allavena P, Sica A et al (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30:1073–1081PubMedCrossRefGoogle Scholar
  146. 146.
    Shigdar S, Li Y, Bhattacharya S et al (2014) Inflammation and cancer stem cells. Cancer Lett 345:271–278PubMedCrossRefGoogle Scholar
  147. 147.
    Jinushi M (2014) Role of cancer stem cell-associated inflammation in creating pro-inflammatory tumorigenic microenvironments. Oncoimmunology 15:e28862PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Hagemann T, Robinson SC, Schulz M et al (2004) Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases. Carcinogenesis 25:1543–1549PubMedCrossRefGoogle Scholar
  149. 149.
    Bengsch F, Buck A, Günther SC et al (2014) Cell type-dependent pathogenic functions of overexpressed human cathepsin B in murine breast cancer progression. Oncogene 33:4474–4484Google Scholar
  150. 150.
    Mohamed MM, Cavallo-Medved D, Rudy D et al (2010) Interleukin-6 increases expression and secretion of cathepsin B by breast tumor-associated monocytes. Cell Physiol Biochem 25:315–324PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Gopinath S, Malla R, Alapati K et al (2013) Cathepsin B and uPAR regulate self-renewal of glioma-initiating cells through GLI-regulated Sox2 and Bmi1 expression. Carcinogenesis 34:550–559PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21:137–148PubMedCrossRefGoogle Scholar
  153. 153.
    Ryungsa K, Manabu E, Kazuaki T et al (2007) Cancer immunoediting from immune surveillance to immune escape. Immunology 121:1–14Google Scholar
  154. 154.
    Swann Jeremy B, Smyth Mark J (2007) Immune surveillance of tumors. J Clin Invest 117:1137–1146PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Cullen SP, Brunet M, Martin SJ (2010) Granzymes in cancer and immunity. Cell Death Differ 17:616–623CrossRefPubMedGoogle Scholar
  156. 156.
    Waldhauer I, Steinle A (2008) NK cells and cancer immuno surveillance. Oncogene 27:5932–5943PubMedCrossRefGoogle Scholar
  157. 157.
    Strik MC, de Koning PJ, Kleijmeer MJ et al (2007) Human mast cells produce and release the cytotoxic lymphocyte associated protease granzyme B upon activation. MolImmunol 44:3462–3472Google Scholar
  158. 158.
    Dimitriadou V, Koutsilieris M (1997) Mast cell–tumor cell interactions: for or against tumor growth and metastasis. Anticancer Res 17:1541–1549PubMedGoogle Scholar
  159. 159.
    Ames E, Canter RJ, Grossenbacher SK et al (2015) NK cells preferentially target tumor cells with a cancer stem cell phenotype. J Immunol 195:4010–4019PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Waldhauer I, Goehlsdorf D, Gieseke F et al (2008) Tumor-associated MICA is shed by ADAM proteases. Cancer Res 68:6368–6376PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Jachetti E, Caputo S, Mazzoleni S et al (2015) Tenascin-C protects cancer stem-like cells from immune surveillance by arresting T-cell activation. Cancer Res 75:2095–2108PubMedCrossRefGoogle Scholar
  162. 162.
    Sarkar S, Zemp FJ, Senger D et al (2015) ADAM-9 is a novel mediator of tenascin-C-stimulated invasiveness of brain tumor-initiating cells. Neuro Oncol 17:1095–1105Google Scholar
  163. 163.
    Remacle AG, Golubkov VS, Shiryaev SA, Dahl R, Stebbins JL, Chernov AV, Cheltsov AV, Pellecchia M, Strongin AY (2012) Novel MT1-MMP small-molecule inhibitors based on insights into hemopexin domain function in tumor growth. Cancer Res 72(9):2339–2349PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Butler GS, Hutton M, Wattam BA et al (1999) The specificity of TIMP-2 for matrix metalloproteinases can be modified by single amino acid mutations. J BiolChem 274:20391–20396Google Scholar
  165. 165.
    Djafarzadeh R, Noessner E, Engelmann H et al (2006) GPI-anchored TIMP-1 treatment renders renal cell carcinoma sensitive to FAS-meditated killing. Oncogene 25:1496–1508PubMedCrossRefGoogle Scholar
  166. 166.
    Darini CY, Martin P, Azoulay S et al (2013) Targeting cancer stem cells expressing an embryonic signature with anti-proteases to decrease their tumor potential. Cell Death Dis 4:e706PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Bernstein WB, Dennis PA (2008) Repositioning HIV protease inhibitors as cancer therapeutics. CurrOpin HIV AIDS 3:666–675PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Poulami Khan
    • 1
  • Shruti Banerjee
    • 1
  • Apoorva Bhattacharya
    • 1
  • Dipanwita Dutta Chowdhury
    • 1
  • Apratim Dutta
    • 1
  • Tanya Das
    • 1
    Email author
  1. 1.Division of Molecular MedicineBose InstituteKolkataIndia

Personalised recommendations