Matrix Metalloproteinases (MMPs) in Cancer Initiation and Progression

  • Sanjeev Kumar MauryaEmail author
  • Nitesh Poddar
  • Pallavi Tandon
  • Ajit Kumar Yadav


Matrix metalloproteinases (MMPs) are calcium-dependent zinc-containing peptidehydrolase, which are actively involved in degradation of the extracellular matrix (ECM), organ development, and tissue remodeling to maintain homeostasis of tissue. Through degradation of ECM in tumor, MMPs provide fundamental base for further tumor cell metastasis. The complex constitution of tumor microenvironment permits various types of regulatory mechanism and expression of cascades of MMPs. Through which various functions of MMPs can be determined. The physiological role of MMP enzymes can be determined by their location and time frame of its activity during tumor progression. According to the recent studies which have revealed the diverse functions of MMPs other than ECM degradation, MMPs are known to play a major role in regulation of many signaling pathways. Their participation in such pathways helps in altering cell physiology as well as in combating disease. MMPs regulate initiation of apoptosis in tumor cells through cleavage of ligands or receptors. There are evidences which support MMPs role in angiogenic and lymph-angiogenic processes. Most of the studies suggest the major involvement of MMP-2, MMP-9, and MMP-14 in tumor angiogenesis, and to a smaller extent, MMP-1 and MMP-7 are also known to be involved. MMPs also play a prominent role in generation of growth signals, apoptosis regulation, tumor vasculature, initiation of neoplastic progression, invasion and metastasis, metastatic niche formation, and MMPs orchestrate inflammation in cancer. Some other non-proteolytic functions of MMPs are also important to be considered in cancer. Wide range of MMPs role in cancer initiation and progression also provides wide range of therapeutic opportunity for cancer treatment.


Matrix metalloproteinase Oncogenesis Vasculature Angiogenesis Tumor growth Metastasis Invasion 


  1. 1.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  2. 2.
    Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392 CrossRefPubMedGoogle Scholar
  3. 3.
    Gross J, Lapiere CM (1962) Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci USA 48:1014–1022PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Parks WC, Wilson CL, Lopez-Boado YS (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4:617–629PubMedCrossRefGoogle Scholar
  6. 6.
    Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174CrossRefPubMedGoogle Scholar
  7. 7.
    Hideaki N (1998) Cell surface activation of progelatinaseA (proMMP-2) and cell migration. Cell Res 8:179–186CrossRefGoogle Scholar
  8. 8.
    Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Edwards DR, Handsley MM, Pennington CJ (2008) The ADAM metalloproteinases. Mol Aspects Med 29:258–289PubMedCrossRefGoogle Scholar
  10. 10.
    Tong W, Ye F, He L et al (2016) Serum biomarker panels for diagnosis of gastric cancer. Onco Targets Ther 26(9):2455–2463Google Scholar
  11. 11.
    Kelwick R, Desanlis I, Wheeler GN, Edwards DR (2015) The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family. Genome Biol 16:113PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Kelwick R, Wagstaff L, Decock J et al (2015) Metalloproteinase-dependent and -independent processes contribute to inhibition of breast cancer cell migration, angiogenesis and liver metastasis by a disintegrin and metalloproteinase with thrombospondin motifs-15. Int J Cancer 136(4):E14–E26PubMedCrossRefGoogle Scholar
  13. 13.
    Arpino V, Brock M, Gill SE (2015) The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol 44–46:247–254PubMedCrossRefGoogle Scholar
  14. 14.
    Wang S, Wei X, Zhou J et al (2014) Identification of α2-macroglobulin as a master inhibitor of cartilage-degrading factors that attenuates the progression of posttraumatic osteoarthritis. Arthritis Rheumatol 66(7):1843–1853PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Misra UK, Pizzo SV (2015) Activated α2-macroglobulin binding to human prostate cancer cells triggers insulin-like responses. J Biol Chem 290(15):9571–9587PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Deryugina EI, Quigley JP (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25:9–34PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Duan JX, Rapti M, Tsigkou A, Lee MH (2015) Expanding the Activity of tissue inhibitors of metalloproteinase (TIMP)-1 against surface-anchored metalloproteinases by the replacement of its C-terminal domain: implications for anti-cancer effects. PLoS ONE 10(8):e0136384PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Asadzadeh R, Khosravi S, Zavareh S, Ghorbanian MT, Paylakhi SH, Mohebbi SR (2008) Vitrification affects the expression of matrix metalloproteinases and their tissue inhibitors of mouse ovarian tissue. Int J Reprod Biomed (Yazd) 14(3):173–180Google Scholar
  19. 19.
    Murphy G (2008) The ADAMs: signalling scissors in the tumour microenvironment. Nat Rev Cancer 8:932–941CrossRefGoogle Scholar
  20. 20.
    Egeblad M, Ewald AJ, Askautrud HA et al (2008) Visualizing stromal cell dynamics in different tumor microenvironments by spinning disk confocal microscopy. Dis Model Mech 1:155–167PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67. doi: 10.1016/j.cell.2010.03.015CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kessenbrock K, Krumbholz M, Schonermarck U et al (2009) Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med 15:623–625PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Peres R, Furuya H, Pagano I, Shimizu Y, Hokutan K, Rosser CJ (2016) Angiogenin contributes to bladder cancer tumorigenesis by DNMT3b-mediated MMP2 activation. Oncotarget. doi: 10.18632/oncotarget.10097CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Basagiannis D, Christoforidis S (2016) Constitutive endocytosis of VEGFR2 protects the receptor against shedding. J Biol Chem. pii:jbc.M116.730309Google Scholar
  25. 25.
    Weiss A, Joerss H, Brockmeyer J (2014) Structural and functional characterization of cleavage and inactivation of human serine protease inhibitors by the bacterial SPATE protease EspPα from enterohemorrhagic E. coli. PLoS ONE 9(10):e111363PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Grinnell F, Zhu M (1996) Fibronectin degradation in chronic wounds depends on the relative levels of elastase, alpha1-proteinase inhibitor, and alpha2-macroglobulin. J Invest Dermatol 106(2):335–341PubMedCrossRefGoogle Scholar
  27. 27.
    Liu Z, Zhou X, Shapiro SD et al (2000) The serpin alpha1-proteinase inhibitor is a critical substrate for gelatinase B/MMP-9 in vivo. Cell 102(5):647–655PubMedCrossRefGoogle Scholar
  28. 28.
    Lian S, Xia Y, Khoi PN et al (2015) Cadmium induces matrix metalloproteinase-9 expression via ROS-dependent EGFR, NF-кB, and AP-1 pathways in human endothelial cells. Toxicology 338:104–116. doi: 10.1016/j.tox.2015.10.008CrossRefPubMedGoogle Scholar
  29. 29.
    Weiss SJ, Peppin G, Ortiz X, Ragsdale C, Test ST (1985) Oxidative autoactivation of latent collagenase by human neutrophils. Science 227:747–749PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Fu X, Kassim SY, Parks WC, Heinecke JW (2003) Hypochlorous acid generated by myeloperoxidase modifies adjacent tryptophan and glycine residues in the catalytic domain of matrix metalloproteinase-7 (matrilysin): an oxidative mechanism for restraining proteolytic activity during inflammation. J Biol Chem 278:28403–28409PubMedCrossRefGoogle Scholar
  31. 31.
    Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573PubMedCrossRefGoogle Scholar
  32. 32.
    Rupp PA, Visconti RP, Czirok A, Cheresh DA, Little CD (2008) Matrix metalloproteinase 2-integrin alpha(v)beta3 binding is required for mesenchymal cell invasive activity but not epithelial locomotion: a computational time-lapse study. Mol Biol Cell 19:5529–5540PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Sabeh F, Ota I, Holmbeck K et al (2004) Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. J Cell Biol 167:769–781PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Wolf K, Wu YI, Liu Y, Geiger J, Tam E, Overall C, Stack MS, Friedl P (2007) Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 9:893–904PubMedCrossRefGoogle Scholar
  35. 35.
    Friedl P, Wolf K (2008) Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res 68:7247–7249PubMedCrossRefGoogle Scholar
  36. 36.
    Brinkmann V, Reichard U, Goosmann C et al (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535PubMedCrossRefGoogle Scholar
  37. 37.
    Carmona-Rivera C, Zhao W, Yalavarthi S, Kaplan MJ (2015) Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase-2. Ann Rheum Dis 74(7):1417–1424PubMedCrossRefGoogle Scholar
  38. 38.
    Boone BA, Orlichenko L, Schapiro NE et al (2015) The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer. Cancer Gene Ther 22(6):326–334PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Cedervall J, Zhang Y, Huang H, Zhang L, Femel J, Dimberg A et al (2015) Neutrophil extracellular traps accumulate in peripheral blood vessels and compromise organ function in tumor-bearing animals. Cancer Res 75(13):2653–2662PubMedCrossRefGoogle Scholar
  40. 40.
    Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumour progression. Nat Rev Cancer 9:108–122PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kopanska KS, Alcheikh Y, Staneva R, Vignjevic D, Betz T (2016) Tensile forces originating from cancer spheroids facilitate tumor invasion. PLoS ONE 11(6):e0156442PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Jerrell RJ, Parekh A (2016) Matrix rigidity differentially regulates invadopodia activity through ROCK1 and ROCK2. Biomaterials 84:119–129PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Zhang X, Halvorsen K, Zhang CZ, Wong WP, Springer TA (2009) Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor. Science 324:1330–1334PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Scherer RL, McIntyre JO, Matrisian LM (2008) Imaging matrix metalloproteinases in cancer. Cancer Metastasis Rev 27:679–690PubMedCrossRefGoogle Scholar
  45. 45.
    Littlepage LE, Sternlicht MD, Rougier N et al (2010) Matrix metalloproteinases contribute distinct roles in neuroendocrine prostate carcinogenesis, metastasis, and angiogenesis progression. Cancer Res 70:2224–2234PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Bremer C, Tung CH, Weissleder R (2001) In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 7:743–748PubMedCrossRefGoogle Scholar
  47. 47.
    Furumoto S, Takashima K, Kubota K, Ido T, Iwata R, Fukuda H (2003) Tumor detection using 18F-labeled matrix metalloproteinase-2 inhibitor. Nucl Med Biol 30:119–125PubMedCrossRefGoogle Scholar
  48. 48.
    Schafers M, Riemann B, Kopka K, Breyholz HJ, Wagner S, Schafers KP, Law MP, Schober O, Levkau B (2004) Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo. Circulation 109:2554–2559PubMedCrossRefGoogle Scholar
  49. 49.
    Temma T, Sano K, Kuge Y, Kamihashi J, Takai N, Ogawa Y et al (2009) Development of a radiolabeled probe for detecting membrane type-1 matrix metalloproteinase on malignant tumors. Biol Pharm Bull 32:1272–1277PubMedCrossRefGoogle Scholar
  50. 50.
    Jastrzebska B, Lebel R, Therriault H et al (2009) New enzyme-activated solubility-switchable contrast agent for magnetic resonance imaging: from synthesis to in vivo imaging. J Med Chem 52:1576–1581PubMedCrossRefGoogle Scholar
  51. 51.
    Olson ES, Aguilera AT, Jiang T et al (2009) In vivo characterization of activatable cell penetrating pepides for targeting protease activity in cancer. Integr Biol 1:382–393CrossRefGoogle Scholar
  52. 52.
    Cho H, Bhatti FU, Yoon TW, Hasty KA, Stuart JM, Yi AK (2016) Non-invasive dual fluorescence in vivo imaging for detection of macrophage infiltration and matrix metalloproteinase (MMP) activity in inflammatory arthritic joints. Biomed Opt Express 7(5):1842–1852PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Scherer RL, VanSaun MN, McIntyre JO, Matrisian LM (2008) Optical imaging of matrix metalloproteinase-7 activity in vivo using a proteolytic nanobeacon. Mol Imaging 7(3):118–131PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Hugenberg V, Hermann S, Galla F et al (2016) Radiolabeled hydroxamate-based matrix metalloproteinase inhibitors: how chemical modifications affect pharmacokinetics and metabolic stability. Nucl Med Biol 43(7):424–437PubMedCrossRefGoogle Scholar
  55. 55.
    Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S (1980) Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284:67–68PubMedCrossRefGoogle Scholar
  56. 56.
    Massague J (2008) TGFbeta in Cancer. Cell 134:215–230PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Lei R, Zhang K, Liu K et al (2016) Transferrin receptor facilitates TGF-β and BMP signaling activation to control craniofacial morphogenesis. Cell Death Dis 7(6):e2282PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14:163–176PubMedPubMedCentralGoogle Scholar
  59. 59.
    Mu D, Cambier S, Fjellbirkeland L et al (2002) The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1. J Cell Biol 157:493–507PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Dallas SL, Rosser JL, Mundy GR, Bonewald LF (2002) Proteolysis of latent transforming growth factor-beta (TGF-beta)-binding protein-1 by osteoclasts. A cellular mechanism for release of TGF-beta from bone matrix. J Biol Chem 277:21352–21360PubMedCrossRefGoogle Scholar
  61. 61.
    Tatti O, Vehvilainen P, Lehti K, Keski-Oja J (2008) MT1-MMP releases latent TGF-beta1 from endothelial cell extracellular matrix via proteolytic processing of LTBP-1. Exp Cell Res 314:2501–2514PubMedCrossRefGoogle Scholar
  62. 62.
    De Vlaeminck Y, González-Rascón A, Goyvaerts C, Breckpot K (2016) Cancer-associated myeloid regulatory cells. Front Immunol 7:113PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5:341–354PubMedCrossRefGoogle Scholar
  64. 64.
    Wang ZQ, Faddaoui A, Bachvarova M et al (2015) BCAT1 expression associates with ovarian cancer progression: possible implications in altered disease metabolism. Oncotarget 6(31):31522–31543PubMedPubMedCentralGoogle Scholar
  65. 65.
    Cowden Dahl KD, Symowicz J, Ning Y et al (2008) Matrix metalloproteinase 9 is a mediator of epidermal growth factor-dependent e-cadherin loss in ovarian carcinoma cells. Cancer Res 68:4606–4613PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Maretzky T, Reiss K, Ludwig A et al (2005) ADAM10 mediates Ecadherin shedding and regulates epithelial cell-cell adhesion, migration, and beta-catenin translocation. Proc Natl Acad Sci USA 102:9182–9187PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lochter A, Galosy S, Muschler J, Freedman N, Werb Z, Bissell MJ (1997) Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol 139:1861–1872PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Radisky DC, Levy DD, Littlepage LE et al (2005) Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436:123–127PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Witters L, Scherle P, Friedman S et al (2008) Synergistic inhibition with a dual epidermal growth factor receptor/HER-2/neu tyrosine kinase inhibitor and a disintegrin and metalloprotease inhibitor. Cancer Res 68:7083–7089PubMedCrossRefGoogle Scholar
  70. 70.
    Mitsiades N, Yu WH, Poulaki V, Tsokos M, Stamenkovic I (2001) Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity. Cancer Res 61:577–581PubMedGoogle Scholar
  71. 71.
    Khamis Zahraa I, Man YG et al (2016) Evidence for a proapoptotic role of matrix metalloproteinase-26 in human prostate cancer cells and tissues. J Cancer 7(1):80PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Liu H, Zhang T, Li X et al (2008) Predictive value of MMP-7 expression for response to chemotherapy and survival in patients with non-small cell lung cancer. Cancer Sci 99:2185–2192PubMedCrossRefGoogle Scholar
  73. 73.
    Schulte M, Reiss K, Lettau M, Maretzky T, Ludwig A, Hartmann D, De Strooper B, Janssen O, Saftig P (2007) ADAM10 regulates FasL cell surface expression and modulates FasL-induced cytotoxicity and activation induced cell death. Cell Death Differ 14:1040–1049PubMedGoogle Scholar
  74. 74.
    Crawford HC, Scoggins CR, Washington MK, Matrisian LM, Leach SD (2002) Matrix metalloproteinase-7 is expressed by pancreatic cancer precursors and regulates acinar-to-ductal metaplasia in exocrine pancreas. J Clin Invest 109:1437–1444PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Liao Jung Chun, You BJ et al (2015) Raf/ERK/Nrf2 signaling pathway and MMP-7 expression involvement in the trigonelline-mediated inhibition of hepatocarcinoma cell migration. Food Nutr Res 59:29884. doi: 10.3402/fnr.v59.29884CrossRefPubMedGoogle Scholar
  76. 76.
    Waldhauer I, Goehlsdorf D, Gieseke F et al (2008) Tumorassociated MICA is shed by ADAM proteases. Cancer Res 68:6368–6376PubMedCrossRefGoogle Scholar
  77. 77.
    Le MauxChansac B, Misse D, Richon C et al (2008) Potentiation of NK cell-mediated cytotoxicity in human lung adenocarcinoma: role of NKG2D-dependent pathway. Int Immunol 20:801–810CrossRefGoogle Scholar
  78. 78.
    Padera TP, Kadambi A, Di Tomaso E et al (2002) Lymphatic metastasis in the absence of functional intratumorlymphatics. Science 296:1883–1886PubMedCrossRefGoogle Scholar
  79. 79.
    Abdelfattah NS, Amgad M, Zayed AA, Hussein H, Abd El-Baky N (2016) Molecular underpinnings of corneal angiogenesis: advances over the past decade. Int J Ophthalmol 9(5):768–779PubMedPubMedCentralGoogle Scholar
  80. 80.
    Bergers G, Brekken R, McMahon G et al (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2(10):737–744PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Asanuma K, Yoshikawa T, Yoshida K et al (2016) Argatroban more effectively inhibits the thrombin activity in synovial fluid than naturally occurring thrombin inhibitors. Cell Mol Biol 62(6):27–32PubMedGoogle Scholar
  82. 82.
    Han YH, Gao B, Huang JH et al (2015) Expression of CD147, PCNA, VEGF, MMPs and their clinical significance in the giant cell tumor of bones. Int J Clin Exp Pathol 8(7):8446–8452PubMedPubMedCentralGoogle Scholar
  83. 83.
    Du R, Lu KV, Petritsch C et al (2008) HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13:206–220PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Ahn GO, Brown JM (2008) Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. Cancer Cell 13:193–205PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Ardi VC, Kupriyanova TA, Deryugina EI, Quigley JP (2007) Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proc Natl Acad Sci USA 104:20262–20267PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Ardi VC, Van den Steen PE, Opdenakker G, Schweighofer B, Deryugina EI, Quigley JP (2009) Neutrophil MMP-9 Proenzyme, unencumbered by TIMP-1, undergoes efficient activation in vivo and catalytically induces an giogenesis via a basic fibroblast growth factor (FGF-2)/FGFR-2 pathway. J Biol Chem 284:25854–25866PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Mentzel T, Brown LF, Dvorak HF et al (2001) The association between tumour progression and vascularity in myxofibrosarcoma and myxoid/round cell liposarcoma. Virchows Arch 438:13–22PubMedCrossRefGoogle Scholar
  88. 88.
    Nozawa H, Chiu C, Hanahan D (2006) Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci USA 103:12493–12498PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Ribatti D (2009) Endogenous inhibitors of angiogenesis: a historical review. Leuk Res 33:638–644PubMedCrossRefGoogle Scholar
  90. 90.
    Heljasvaara R, Nyberg P, Luostarinen J et al (2005) Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases. Exp Cell Res 307:292–304PubMedCrossRefGoogle Scholar
  91. 91.
    Behl Tapan, Kotwani A (2015) Possible role of endostatin in the antiangiogenic therapy of diabetic retinopathy. Life Sci 135:131–137PubMedCrossRefGoogle Scholar
  92. 92.
    Hamano Y, Zeisberg M, Sugimoto H et al (2003) Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell 3:589–601PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Cornelius LA, Nehring LC, Harding E et al (1998) Matrix metalloproteinases generate angiostatin: effects on neovascularization. J Immunol 161:6845–6852PubMedGoogle Scholar
  94. 94.
    Houghton AM, Grisolano JL, Baumann ML et al (2006) Macrophage elastase (matrix metalloproteinase-12) suppresses growth of lung metastases. Cancer Res 66:6149–6155PubMedCrossRefGoogle Scholar
  95. 95.
    Sounni NE, Dehne K, van Kempen L, Egeblad M, Affara NI, Cuevas I, Wiesen J, Junankar S, Korets L, Lee J et al (2010) Stromal regulation of vessel stability by MMP14 and TGFbeta. Dis Model Mech 6:317–332CrossRefGoogle Scholar
  96. 96.
    Nakamura ES, Koizumi K, Kobayashi M, Saiki I (2004) Inhibition of lymphangiogenesis-related properties of murine lymphatic endothelial cells and lymph node metastasis of lung cancer by the matrix metalloproteinase inhibitor MMI270. Cancer Sci 95:25–31PubMedCrossRefGoogle Scholar
  97. 97.
    Bruyere F, Melen-Lamalle L, Blacher S et al (2008) Modeling lymphangiogenesis in a three-dimensional culture system. Nat Methods 5:431–437PubMedCrossRefGoogle Scholar
  98. 98.
    Langenskiold M, Holmdahl L, Falk P, Ivarsson ML (2005) Increased plasma MMP-2 protein expression in lymph node-positive patients with colorectal cancer. Int J Colorectal Dis 20:245–252CrossRefPubMedGoogle Scholar
  99. 99.
    Islekel H, Oktay G, Terzi C, Canda AE, Fuzun M, Kupelioglu A (2007) Matrix metalloproteinase-9,-3 and tissue inhibitor of matrix metalloproteinase-1 in colorectal cancer: relationship to clinicopathological variables. Cell Biochem Funct 25:433–441PubMedCrossRefGoogle Scholar
  100. 100.
    Rutkowski JM, Davis KE, Scherer PE (2009) Mechanisms of obesity and related pathologies: the macro- and microcirculation of adipose tissue. FEBS J 276:5738–5746PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Tsiklauri L, Werner J, Frommer KW, Müller-Ladner U, Wenisch S, Neumann E (2016) A4. 09 Adipokines affect differentiation of osteoarthritis and osteoporosis spongiosa-derivedmesenchymal stromal cells. Rheum Dis (Suppl 1): A40–A40Google Scholar
  102. 102.
    Yeh WL, Lu DY, Lee MJ, Fu WM (2009) Leptin induces migration and invasion of glioma cells through MMP-13 production. Glia 57:454–464PubMedCrossRefGoogle Scholar
  103. 103.
    Pinilla S, Alt E, Abdul Khalek FJ et al (2009) Tissue resident stem cells produce CCL5 under the influence of cancer cells and thereby promote breast cancer cell invasion. Cancer Lett 284:80–85PubMedCrossRefGoogle Scholar
  104. 104.
    Nakayama A, Aoki S, Uchihashi K et al (2016) Interaction between esophageal squamous cell carcinoma and adipose tissue in vitro. Am J Pathol 186(5):1180–1194PubMedCrossRefGoogle Scholar
  105. 105.
    Alexander CM, Selvarajan S, Mudgett J, Werb Z (2001) Stromelysin-1 regulates adipogenesis during mammary gland involution. J Cell Biol 152:693–703PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Chun TH, Hotary KB, Sabeh F, Saltiel AR, Allen ED, Weiss SJ (2006) A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 125:577–591PubMedCrossRefGoogle Scholar
  107. 107.
    Peters-Hall Jennifer R, Brown KJ et al (2015) Quantitative proteomics reveals an altered cystic fibrosis in vitro bronchial epithelial secretome. Am J of Res Cell and Mol Biol 53:22–32CrossRefGoogle Scholar
  108. 108.
    Wu Y, Smas CM (2008) WSdnm1-like, a new adipokine with a role in MMP-2 activation. Am J Phys Endocrinol Metab 295:E205–E215CrossRefGoogle Scholar
  109. 109.
    Motrescu ER, Rio MC (2008) Cancer cells, adipocytes and matrix metalloproteinase 11: a vicious tumor progression cycle. Biol Chem 389:1037–1041PubMedCrossRefGoogle Scholar
  110. 110.
    Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW, Pinkel D, Bissell MJ, Werb Z (1999) The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98:137–146PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, Kuliopulos A (2005) PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120:303–313PubMedCrossRefGoogle Scholar
  113. 113.
    Lynch CC, Hikosaka A, Acuff HB et al (2005) MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell 7:485–496PubMedCrossRefGoogle Scholar
  114. 114.
    Lu X, Wang Q, Hu G, Van Poznak C, Fleisher M, Reiss M, Massague J, Kang Y (2009) ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis. Genes Dev 23:1882–1894PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Kang Y, Siegel PM, Shu W et al (2003) Amultigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549PubMedCrossRefGoogle Scholar
  116. 116.
    Zeitoun AH, Ibrahim SS, Bagowski CP (2012) Identifying the common interaction networks of amoeboid motility and cancer cell metastasis. Netw Biol 2(2):45Google Scholar
  117. 117.
    Hiratsuka S, Watanabe A, Aburatani H, Maru Y (2006) Tumourmediatedupregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8:1369–1375PubMedCrossRefGoogle Scholar
  118. 118.
    Hiratsuka S, Watanabe A, Sakurai Y et al (2008) The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol 10:1349–1355PubMedCrossRefGoogle Scholar
  119. 119.
    Bond M, Fabunmi RP, Baker AH, Newby AC (1998) Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-kappa B. FEBS Lett 435:29–34PubMedCrossRefGoogle Scholar
  120. 120.
    Heissig B, Hattori K, Dias S et al (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109:625–637PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Erler JT, Bennewith KL, Cox TR et al (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15:35–44PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Levental KR, Yu H, Kass L et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Huang Y, Song N, Ding Y et al (2009) Pulmonary vascular destabilization in the premetastatic phase facilitates lung metastasis. Cancer Res 69:7529–7537PubMedCrossRefGoogle Scholar
  124. 124.
    Lin WW, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 117:1175–1183PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Manicone AM, Guire JK (2008) Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol 19:34–41PubMedCrossRefGoogle Scholar
  126. 126.
    Haro H, Crawford HC, Fingleton B, Shinomiya K, Spengler DM, Matrisian LM (2000) Matrix metalloproteinase-7-dependent release of tumor necrosis factor-alpha in a model of herniated disc resorption. J Clin Invest 105:143–150PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Luo JL, Maeda S, Hsu LC, Yagita H, Karin M (2004) Inhibition of NF-kappaB in cancer cells converts inflammation-induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell 6:297–305PubMedCrossRefGoogle Scholar
  128. 128.
    McQuibban GA, Gong JH, Wong JP, Wallace JL, Clark-Lewis I, Overall CM (2002) Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood 100:1160–1167PubMedGoogle Scholar
  129. 129.
    Struyf S, Proost P, Vandercappellen J et al (2009) Synergistic up-regulation of MCP-2/CCL8 activity is counteracted by chemokine cleavage, limiting its inflammatory and anti-tumoral effects. Eur J Immunol 39:843–857PubMedCrossRefGoogle Scholar
  130. 130.
    Cox JH, Dean RA, Roberts CR, Overall CM (2008) Matrix metalloproteinase processing of CXCL11/I-TAC results in loss of chemoattractant activity and altered glycosaminoglycan binding. J BiolChem 283:19389–19399Google Scholar
  131. 131.
    Burns JM, Summers BC, Wang Y et al (2006) A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 203:2201–2213PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Houghton AM, Quintero PA, Perkins DL et al (2006) Elastin fragments drive disease progression in a murine model of emphysema. J Clin Invest 116:753–759PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Weathington NM, van Houwelingen AH, Noerager BD et al (2006) A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation. Nat Med 12:317–323PubMedCrossRefGoogle Scholar
  134. 134.
    Rocks N, Paulissen G, Quesada-Calvo F et al (2008) ADAMTS-1 metalloproteinase promotes tumor development through the induction of a stromal reaction in vivo. Cancer Res 68:9541–9550PubMedCrossRefGoogle Scholar
  135. 135.
    Gutierrez-Fernandez A, Inada M, Balbin M et al (2007) Increased inflammation delays wound healing in mice deficient in collagenase-2 (MMP-8). FASEB J 21:2580–2591PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Balbin M, Fueyo A, Tester AM et al (2003) Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet 35:252–257PubMedCrossRefGoogle Scholar
  137. 137.
    Palavalli LH, Prickett TD, Wunderlich JR et al (2009) Analysis of the matrix metalloproteinase family reveals that MMP8 is often mutated in melanoma. Nat Genet 41:518–520PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Gutierrez-Fernandez A, Fueyo A, Folgueras AR et al (2008) Matrix metalloproteinase-8 functions as a metastasis suppressor through modulation of tumor cell adhesion and invasion. Cancer Res 68:2755–2763PubMedCrossRefGoogle Scholar
  139. 139.
    De Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6:24–37PubMedCrossRefGoogle Scholar
  140. 140.
    Li Q, Park PW, Wilson CL, Parks WC (2002) Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111:635–646PubMedCrossRefGoogle Scholar
  141. 141.
    Polverino F, Zhang L, Laucho-Contreras M, Owen C (2015) Surface-bound TIMP-1 on PMNs promotes pericellular proteolysis: a new culprit in COPD? Eur Respir J 46:PA905Google Scholar
  142. 142.
    Leśniak W, Agnieszka Hrabia A (2016) Involvement of matrix metalloproteinases (MMP-2,-7,-9) and their tissue inhibitors (TIMP-2,-3) in the chicken oviduct regression and recrudescence. Cell Tissue Res 5:1–12Google Scholar
  143. 143.
    Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA, Goldberg GI (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem 270:5331–5338PubMedCrossRefGoogle Scholar
  144. 144.
    Dufour A, Sampson NS, Zucker S, Cao J (2008) Role of the hemopexin domain of matrix metalloproteinases in cell migration. J Cell Physiol 217:643–651PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Sakamoto T, Seiki M (2009) Cytoplasmic tail of MT1-MMP regulates macrophage motility independently from its protease activity. Genes Cells 14:617–626PubMedCrossRefGoogle Scholar
  146. 146.
    Glasheen BM, Kabra AT, Page-McCaw A (2009) Distinct functions for the catalytic and hemopexin domains of a Drosophila matrix metalloproteinase. Proc Natl Acad Sci USA 106:2659–2664PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Conant K, St Hillaire C, Nagase H et al (2004) Matrix metalloproteinase 1 interacts with neuronal integrins and stimulates dephosphorylation of Akt. J Biol Chem 279:8056–8062 PubMedCrossRefGoogle Scholar
  148. 148.
    Redondo-Munoz J, Ugarte-Berzal E, Terol MJ et al (2010) Matrix metalloproteinase-9 promotes chronic lymphocytic leukemia b cell survival through its hemopexin domain. Cancer Cell 17:160–172PubMedCrossRefGoogle Scholar
  149. 149.
    Lopez-Otin C, Matrisian LM (2007) Emerging roles of proteases in tumour suppression. Nat Rev Cancer 7:800–808CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Sanjeev Kumar Maurya
    • 1
    Email author
  • Nitesh Poddar
    • 1
  • Pallavi Tandon
    • 1
  • Ajit Kumar Yadav
    • 2
  1. 1.Department of BiotechnologyInvertis UniversityBareillyIndia
  2. 2.Department of PharmacyInvertis UniversityBareillyIndia

Personalised recommendations