Advertisement

Procedures for Transformation and Their Applications in Cyanidioschyzon merolae

  • Takayuki FujiwaraEmail author
  • Mio Ohnuma
Chapter

Abstract

The red alga Cyanidioschyzon merolae exhibits an extremely simple cytological genomic architecture. This feature offers advantages in cytological and biochemical studies. Methods for nuclear gene targeting have been developed during the last decade. Currently, gene knockout, knock-in, and a stable expression of transgene are feasible in C. merolae. In addition, to examine the function of genes that are essential for cell viability, heat-shock inducible gene expression and nitrogen source-dependent inducible/repressible gene expression systems have also been developed. The combination of emerging genetic tools and the simple features of C. merolae facilitate various “omics” analyses across several disciplines.

Keywords

Transformation Homologous recombination Gene targeting, biotechnology Algae Genetic engineering 

Notes

Acknowledgments

Our study was partly supported by JSPS KAKENHI (no. JP15K18588 to T.F.; no. 25251039 to S.M.) and by the Core Research for Evolutional Science and Technology Program of the Japan Science and Technology Agency (S.M.). We thank S. Miyagishima in National Institute of Genetics for his careful and critical reading of our manuscript.

References

  1. Fujii G, Imamura S et al (2013) Nuclear-encoded chloroplast RNA polymerase sigma factor SIG2 activates chloroplast-encoded phycobilisome genes in a red alga, Cyanidioschyzon merolae. FEBS Lett 587:3354–3359CrossRefPubMedGoogle Scholar
  2. Fujiwara T, Tanaka K et al (2013a) Spatiotemporal dynamics of condensins I and II: evolutionary insights from the primitive red alga Cyanidioschyzon merolae. Mol Biol Cell 16:2515–2527CrossRefGoogle Scholar
  3. Fujiwara T, Ohnuma M et al (2013b) Gene targeting in the red alga Cyanidioschyzon merolae: single- and multi-copy insertion using authentic and chimeric selection markers. PLoS One 8(9):e73608CrossRefPubMedPubMedCentralGoogle Scholar
  4. Fujiwara T, Kanesaki Y et al (2015) A nitrogen source-dependent inducible and repressible gene expression system in the red alga Cyanidioschyzon merolae. Front Plant Sci 6:657PubMedPubMedCentralGoogle Scholar
  5. Imamura S, Kanesaki Y et al (2009) R2R3-type MYB transcription factor, CmMYB1, is a central nitrogen assimilation regulator in Cyanidioschyzon merolae. Proc Natl Acad Sci U S A 106:12548–12553CrossRefPubMedPubMedCentralGoogle Scholar
  6. Imamura S, Terashita M et al (2010) Nitrate assimilatory genes and their transcriptional regulation in a unicellular red alga Cyanidioschyzon merolae: genetic evidence for nitrite reduction by a sulfite reductase-like enzyme. Plant Cell Physiol 51:707–717CrossRefPubMedGoogle Scholar
  7. Imamura S, Kawase Y et al (2015) Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae. Plant Mol Biol 89:309–318CrossRefPubMedGoogle Scholar
  8. Imamura S, Kawase Y et al (2016) TOR (target of rapamycin) is a key regulator of triacylglycerol accumulation in microalgae. Plant Signal Behav 11(3):e1149285CrossRefPubMedPubMedCentralGoogle Scholar
  9. Imoto Y, Kuroiwa H et al (2013) Single-membrane-bounded peroxisome division revealed by isolation of dynamin-based machinery. Proc Natl Acad Sci U S A 110:9583–8588CrossRefPubMedPubMedCentralGoogle Scholar
  10. Matsuzaki M, Mitsumi O et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657CrossRefPubMedGoogle Scholar
  11. Minoda A, Sakagami R et al (2004) Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol 45:667–671Google Scholar
  12. Miyagishima SY, Fujiwara T et al (2014) Translation-independent circadian control of the cell cycle in a unicellular photosynthetic eukaryote. Nat Commun 5:3807Google Scholar
  13. Moriyama T, Sakurai K et al (2014) Subcellular distribution of central carbohydrate metabolism pathways in the red alga Cyanidioschyzon merolae. Planta 240:585–598CrossRefPubMedGoogle Scholar
  14. Nozaki H, Takano H et al (2007) A 100%-complete sequence reveals unusually simple genomic features in the hot spring red alga Cyanidioschyzon merolae. BMC Biol 5:28CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ohnuma M, Yokoyama T et al (2008) Polyethylene glycol (PEG)-mediated transient gene expression in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol 49:117–120Google Scholar
  16. Ohnuma M, Misumi O et al (2009) Transient gene suppression in a red alga, Cyanidioschyzon merolae 10D. Protoplasma 236:107–112CrossRefPubMedGoogle Scholar
  17. Sumiya N, Fujiwara T et al (2014) Development of a heat-shock inducible gene expression system in the red alga Cyanidioschyzon merolae. PLoS One 9(10):e111261CrossRefPubMedPubMedCentralGoogle Scholar
  18. Sumiya N, Kawase Y et al (2015) Expression of Cyanobacterial acyl-ACP reductase elevates the triacylglycerol level in the red alga Cyanidioschyzon merolae. Plant Cell Physiol 56:1962–1980CrossRefPubMedGoogle Scholar
  19. Sumiya N, Fujiwara T et al (2016) Chloroplast division checkpoint in eukaryotic algae. Proc Natl Acad Sci U S A 113:E7629–E7638CrossRefPubMedPubMedCentralGoogle Scholar
  20. Taki K, Sone T et al (2015) Construction of a URA5.3 deletion strain of the unicellular red alga Cyanidioschyzon merolae: a background less host strain for transformation experiments. J Gen Appl Microbiol 61:211–214CrossRefPubMedGoogle Scholar
  21. Watanabe S, Ohnuma M et al (2011) Utility of a GFP reporter system in the red alga Cyanidioschyzon merolae. J Gen Appl Microbiol 57:69–72CrossRefPubMedGoogle Scholar
  22. Yagisawa F, Nishida K et al (2009) Identification of novel proteins in isolated polyphosphate vacuoles in the primitive red alga Cyanidioschyzon merolae. Plant J 60:882–893CrossRefPubMedGoogle Scholar
  23. Yoshida Y, Kuroiwa H et al (2010) Chloroplasts divide by contraction of a bundle of nanofilaments consisting of polyglucan. Science 329:949–953CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Cell GeneticsNational Institute of GeneticsMishimaJapan
  2. 2.Department of GeneticsGraduate University for Advanced Studies (SOKENDAI)MishimaJapan
  3. 3.Japan Science and Technology AgencySaitamaJapan
  4. 4.National Institute of Technology, Hiroshima CollegeHiroshimaJapan

Personalised recommendations