Advertisement

Cellular Structure of Cyanidioschyzon merolae: A Minimum Set of Organelles

  • Yuuta ImotoEmail author
  • Yamato Yoshida
Chapter

Abstract

The cell of the unicellular red alga Cyanidioschyzon merolae is composed of a very small number of membranous organelles: one cell nucleus, one mitochondrion, one chloroplast (plastid), a simple-shaped ER, one Golgi body with two cisternae, a few vacuoles (lysosomes), and one peroxisome. During the last two decades, numerous electron and fluorescence microscopic studies, combined with synchronous culture, have demonstrated spatial organization and morphological information of these organelles in each cell cycle phase of C. merolae cells. These explorations have revealed that the timing and manner of the organelle behaviors are strictly determined by the progression of the cell division cycle. In addition, the simplicity of the cell structure assists researchers to directly address the biological processes in each organelle. Concurrently, given the completely sequenced genome and various genetic technologies, the simple composition of C. merolae cells provides considerable opportunities to clarify long-standing biological questions, including cell cycle regulation, organelle biogenesis, and various types of metabolic pathways.

Keywords

Cyanidioschyzon merolae Double-membrane-bounded organelle Single-membrane-bounded organelle Cell nucleus Mitochondrion Chloroplast Endoplasmic reticulum Golgi body Lysosome Peroxisome 

References

  1. Fujiwara T, Misumi O, Tashiro K, Yoshida Y, Nishida K, Yagisawa F, Imamura S, Yoshida M, Mori T, Tanaka K, Kuroiwa H, Kuroiwa T (2009) Periodic gene expression patterns during the highly synchronized cell nucleus and organelle division cycles in the unicellular red alga Cyanidioschyzon merolae. DNA Res 16:59–72Google Scholar
  2. Fujiwara T, Kuroiwa H, Yagisawa F, Ohnuma M, Yoshida Y, Yoshida M, Nishida K, Misumi O, Watanabe S, Tanaka K et al (2010a) The coiled-coil protein VIG1 is essential for tethering vacuoles to mitochondria during vacuole inheritance of Cyanidioschyzon merolae. Plant Cell 22:772–781CrossRefPubMedPubMedCentralGoogle Scholar
  3. Fujiwara T, Yagisawa F, Ohnuma M, Yoshida Y, Yoshida M, Nishida K, Misumi O, Kuroiwa H, Kuroiwa T (2010b) The vacuole binding to mitochondria by VIG1 contributes an equal inheritance of the vacuoles in Cyanidioschyzon merolae. Cytologia 75:189–194CrossRefGoogle Scholar
  4. Fujiwara T, Tanaka K, Kuroiwa T, Hirano T (2013) Spatiotemporal dynamics of condensins I and II: evolutionary insights from the primitive red alga Cyanidioschyzon merolae. Mol Biol Cell 24:2515–2527CrossRefPubMedPubMedCentralGoogle Scholar
  5. Fujiwara T, Kanesaki Y, Hirooka S, Era A, Sumiya N, Yoshikawa H, Tanaka K, Miyagishima SY (2015) A nitrogen source-dependent inducible and repressible gene expression system in the red alga Cyanidioschyzon merolae. Front Plant Sci 6:657PubMedPubMedCentralGoogle Scholar
  6. Hirooka S, Misumi O, Yoshida M, Mori T, Nishida K, Yagisawa F, Yoshida Y, Fujiwara T, Kuroiwa H, Kuroiwa T (2009) Expression of the Cyanidioschyzon merolae stromal ascorbate peroxidase in Arabidopsis thaliana enhances thermotolerance. Plant Cell Rep 28:1881–1893CrossRefPubMedGoogle Scholar
  7. Imamura S, Kanesaki Y, Ohnuma M, Inouye T, Sekine Y, Fujiwara T, Kuroiwa T, Tanaka K (2009) R2R3-type MYB transcription factor, CmMYB1, is a central nitrogen assimilation regulator in Cyanidioschyzon merolae. Proc Nat Acad Sci 106:12548–12553CrossRefPubMedPubMedCentralGoogle Scholar
  8. Imamura S, Terashita M, Ohnuma M, Maruyama S, Minoda A, Weber AP, Inouye T, Sekine Y, Fujita Y, Omata T et al (2010) Nitrate assimilatory genes and their transcriptional regulation in a unicellular red alga Cyanidioschyzon merolae: genetic evidence for nitrite reduction by a sulfite reductase-like enzyme. Plant Cell Phys 51:707–717CrossRefGoogle Scholar
  9. Imamura S, Kawase Y, Kobayashi I, Sone T, Era A, Miyagishima SY, Shimojima M, Ohta H, Tanaka K (2015) Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae. Plant Mol Biol 89:309–318CrossRefPubMedGoogle Scholar
  10. Imoto Y, Fujiwara T, Yoshida Y, Kuroiwa H, Maruyama S, Kuroiwa T (2010) Division of cell nuclei, mitochondria, plastids, and microbodies mediated by mitotic spindle poles in the primitive red alga Cyanidioschyzon merolae. Protoplasma 241:63–74CrossRefPubMedGoogle Scholar
  11. Imoto Y, Yoshida Y, Yagisawa F, Kuroiwa H, Kuroiwa T (2011) The cell cycle, including the mitotic cycle and organelle division cycles, as revealed by cytological observations. J Elect Micro 60(suppl 1):S117–S136Google Scholar
  12. Imoto Y, Kuroiwa H, Ohnuma M, Kawano S, Kuroiwa T (2012) Identification of peroxisome-dividing ring in Cyanidioschyzon merolae based on organelle partner hypothesis. Cytologia 77:515–522CrossRefGoogle Scholar
  13. Imoto Y, Kuroiwa H, Yoshida Y, Ohnuma M, Fujiwara T, Yoshida M, Nishida K, Yagisawa F, Hirooka S, Miyagishima S et al (2013) Single-membrane–bounded peroxisome division revealed by isolation of dynamin-based machinery. Proc Nat Acad Sci 110:9583–9588CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kanesaki Y, Imamura S, Minoda A, Tanaka K (2012) External light conditions and internal cell cycle phases coordinate accumulation of chloroplast and mitochondrial transcripts in the red alga Cyanidioschyzon merolae. DNA Res 19:289–303CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kobayashi T, Takahara M, Miyagishima SY, Kuroiwa H, Sasaki N, Ohta N, Matsuzaki M, Kuroiwa T (2002) Detection and localization of a chloroplast-encoded HU-like protein that organizes chloroplast nucleoids. Plant Cell 14:1579–1589CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kobayashi Y, Kanesaki Y, Tanaka A, Kuroiwa H, Kuroiwa T, Tanaka K (2009) Tetrapyrrole signal as a cell-cycle coordinator from organelle to nuclear DNA replication in plant cells. Proc Nat Acad Sci 106:803–807CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kobayashi Y, Imamura S, Hanaoka M, Tanaka K (2011) A tetrapyrrole-regulated ubiquitin ligase controls algal nuclear DNA replication. Nat Cell Biol 13:483–487CrossRefPubMedGoogle Scholar
  18. Kuroiwa T (1998) The primitive red algae Cyanidium caldarium and Cyanidioschyzon merolae as model system for investigating the dividing apparatus of mitochondria and plastids. BioEssays 20:344–354CrossRefGoogle Scholar
  19. Kuroiwa T, Suzuki K, Kuroiwa H (1993) Mitochondrial division by an electron-dense ring in Cyanidioschyzon merolae. Protoplasma 175:173–177CrossRefGoogle Scholar
  20. Kuroiwa T, Kawazu T, Takahashi H, Suzuki K, Ohta N, Kuroiwa H (1994) Comparison of ultrastructures between the ultra-small eukaryote Cyanidioschyzon merolae and Cyanidium caldarium. 341. Cytologia 59:149–158CrossRefGoogle Scholar
  21. Kuroiwa T, Misumi O, Nishida K, Yagisawa F, Yoshida Y, Fujiwara T, Kuroiwa H (2008) Vesicle, mitochondrial, and plastid division machineries with emphasis on dynamin and electron-dense rings. Int Rev Cell Mol Biol 271:97–152CrossRefPubMedGoogle Scholar
  22. Kuroiwa T, Ohnuma M, Imoto Y, Misumi O, Fujiwara T, Miyagishima SY, Sumiya N, Kuroiwa H (2012) Lipid droplets of bacteria, algae and fungi and a relationship between their contents and genome sizes as revealed by BODIPY and DAPI staining. Cytologia 77:289–299CrossRefGoogle Scholar
  23. Maruyama S, Kuroiwa H, Miyagishima SY, Tanaka K, Kuroiwa T (2007) Centromere dynamics in the primitive red alga Cyanidioschyzon merolae. The Plant J 49:1122–1129CrossRefPubMedGoogle Scholar
  24. Matsuzaki M, Misumi O, Shin-i T, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Nishida K et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657CrossRefPubMedGoogle Scholar
  25. Minoda A, Sakagami R, Yagisawa F, Kuroiwa T, Tanaka K (2004) Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Phys 45:667–671CrossRefGoogle Scholar
  26. Misumi O, Sakajiri T, Hirooka S, Kuroiwa H, Kuroiwa T (2008) Cytological studies of metal ion tolerance in the red algae Cyanidioschyzon merolae. Cytologia 73:437–443CrossRefGoogle Scholar
  27. Mita T, Kanbe T, Tanaka K, Kuroiwa T (1986) A ring structure around the dividing plane of the Cyanidium caldarium chloroplast. Protoplasma 130:211–213CrossRefGoogle Scholar
  28. Miyagishima M, Itoh R, Toda K, Takahashi H, Kuroiwa H, Kuroiwa T (1998) Visualization of the microbody division in Cyanidioschyzon merolae with the fluorochrome brilliant sulfoflavin. Protoplasma 201:115–119CrossRefGoogle Scholar
  29. Miyagishima SY, Itoh R, Aita S, Kuroiwa H, Kuroiwa T (1999a) Isolation of dividing chloroplasts with intact plastid-dividing rings from a synchronous culture of the unicellular red alga Cyanidioschyzon merolae. Planta 209:371–375CrossRefPubMedGoogle Scholar
  30. Miyagishima SY, Itoh R, Toda K, Kuroiwa H, Kuroiwa T (1999b) Real-time analyses of chloroplast and mitochondrial division and differences in the behavior of their dividing rings during contraction. Planta 207:343–353CrossRefGoogle Scholar
  31. Miyagishima SY, Itoh R, Toda K, Kuroiwa H, Nishimura M, Kuroiwa T (1999c) Microbody proliferation and segregation cycle in the single-microbody alga Cyanidioschyzon merolae. Planta 208:326–336CrossRefGoogle Scholar
  32. Miyagishima SY, Kuroiwa H, Kuroiwa T (2001a) The timing and manner of disassembly of the apparatuses for chloroplast and mitochondrial division in the red alga Cyanidioschyzon merolae. Planta 212:517–528CrossRefPubMedGoogle Scholar
  33. Miyagishima SY, Takahara M, Kuroiwa T (2001b) Novel filaments 5 nm in diameter constitute the cytosolic ring of the plastid division apparatus. Plant Cell 13:707–721CrossRefPubMedPubMedCentralGoogle Scholar
  34. Miyagishima SY, Nishida K, Mori T, Matsuzaki M, Higashiyama T, Kuroiwa H, Kuroiwa T (2003) A plant-specific dynamin-related protein forms a ring at the chloroplast division site. Plant Cell 15:655–665CrossRefPubMedPubMedCentralGoogle Scholar
  35. Miyagishima SY, Fujiwara T, Sumiya N, Hirooka S, Nakano A, Kabeya Y, Nakamura M (2014) Translation-independent circadian control of the cell cycle in a unicellular photosynthetic eukaryote. Nat Commun 5Google Scholar
  36. Mori N, Moriyama T, Toyoshima M, Sato N (2016) Construction of global acyl lipid metabolic map by comparative genomics and subcellular localization analysis in the red alga Cyanidioschyzon merolae. Front Plant Sci 7Google Scholar
  37. Moriyama T, Sakurai K, Sekine K, Sato N (2014) Subcellular distribution of central carbohydrate metabolism pathways in the red alga Cyanidioschyzon merolae. Planta 240:585–598CrossRefPubMedGoogle Scholar
  38. Nishida K, Takahara M, Miyagishima S-y, Kuroiwa H, Matsuzaki M, Kuroiwa T (2003) Dynamic recruitment of dynamin for final mitochondrial severance in a primitive red alga. Proc Nat Acad Sci 100(4):2146–2151Google Scholar
  39. Nishida K, Yagisawa F, Kuroiwa H, Nagata T, Kuroiwa T (2005) Cell cycle-regulated, microtubule-independent organelle division in Cyanidioschyzon merolae. Mol Biol Cell 16:2493–2502CrossRefPubMedPubMedCentralGoogle Scholar
  40. Nozaki H, Takano H, Misumi O, Terasawa K, Matsuzaki M, Maruyama S, Nishida K, Yagisawa F, Yoshida Y, Fujiwara T et al (2007) A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae. BMC Biol 5(1)Google Scholar
  41. Ohnuma M, Yokoyama T, Inouye T, Sekine Y, Tanaka K (2008) Polyethylene glycol (PEG)-mediated transient gene expression in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Phys 49:117–120CrossRefGoogle Scholar
  42. Ohta N, Sato N, Kuroiwa T (1998) Structure and organization of the mitochondrial genome of the unicellular red alga Cyanidioschyzon merolae deduced from the complete nucleotide sequence. Nuc Acids Res 26:5190–5198CrossRefGoogle Scholar
  43. Ohta N, Matsuzaki M, Misumi O, Miyagishima SY, Nozaki H, Tanaka K, Shin-I T, Kohara Y, Kuroiwa T (2003) Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae. DNA Res, 10: 67–77Google Scholar
  44. Sakajiri T, Asano K, Hirooka S, Ohnuma M, Misumi O, Yoshida M, Fujiwara T, Doi H, Kuroiwa T (2010) The overexpression of Cyanidioschyzon merolae S-adenosylmethionine Synthetase enhances salt tolerance in transgenic Arabidopsis thaliana. Cytologia 75:341–352CrossRefGoogle Scholar
  45. Sumiya N, Fujiwara T, Kobayashi Y, Misumi O, Miyagishima SY (2014) Development of a heat-shock inducible gene expression system in the red alga Cyanidioschyzon merolae. PLoS One 9:e111261CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sumiya N, Kawase Y, Hayakawa J, Matsuda M, Nakamura M, Era A, Tanaka K, Kondo A, Hasunuma T et al (2015) Expression of cyanobacterial acyl-ACP reductase elevates the triacylglycerol level in the red alga Cyanidioschyzon merolae. Plant Cell Phys 56:1962–1980CrossRefGoogle Scholar
  47. Sumiya N, Fujiwara T, Era A, Miyagishima SY (2016) Chloroplast division checkpoint in eukaryotic algae. Proc Nat Acad Sci 113:E7629–E7638CrossRefPubMedPubMedCentralGoogle Scholar
  48. Suzuki K, Ehara T, Osafune T, Kuroiwa H, Kawano S, Kuroiwa T (1994) Behavior of mitochondria, chloroplasts and their nuclei during the mitotic cycle in the ultramicroalga Cyanidioschyzon merolae. Eur J Cell Biol 63:280–288PubMedGoogle Scholar
  49. Takahara M, Kuroiwa H, Miyagishima SY, Mori T, Kuroiwa T (2001) Localization of the mitochondrial FtsZ protein in a dividing mitochondrion. Cytologia 66:421–425CrossRefGoogle Scholar
  50. Takayama Y, Inui Y, Sekiguchi Y, Kobayashi A, Oroguchi T, Yamamoto M, Matsunaga S, Nakasako M (2015) Coherent X-ray diffraction imaging of chloroplasts from Cyanidioschyzon merolae by using X-ray free electron laser. Plant Cell Phys 56:1272–1286CrossRefGoogle Scholar
  51. Yagisawa F, Nishida K, Kuroiwa H, Nagata T, Kuroiwa T (2007) Identification and mitotic partitioning strategies of vacuoles in the unicellular red alga Cyanidioschyzon merolae. Planta 226:1017–1029CrossRefPubMedGoogle Scholar
  52. Yagisawa F, Nishida K, Yoshida M, Ohnuma M, Shimada T, Fujiwara T, Yoshida Y, Misumi O, Kuroiwa H, Kuroiwa T (2009) Identification of novel proteins in isolated polyphosphate vacuoles in the primitive red alga Cyanidioschyzon merolae. The Plant J 60:882–893CrossRefPubMedGoogle Scholar
  53. Yagisawa F, Fujiwara T, Kuroiwa H, Nishida K, Imoto Y, Kuroiwa T (2012) Mitotic inheritance of endoplasmic reticulum in the primitive red alga Cyanidioschyzon merolae. Protoplasma 249:1129–1135CrossRefPubMedGoogle Scholar
  54. Yagisawa F, Fujiwara T, Ohnuma M, Kuroiwa H, Nishida K, Imoto Y, Yoshida Y, Kuroiwa T (2013) Golgi inheritance in the primitive red alga, Cyanidioschyzon merolae. Protoplasma 250:943–948CrossRefPubMedGoogle Scholar
  55. Yoshida Y, Kuroiwa H, Misumi O, Nishida K, Yagisawa F, Fujiwara T, Nanamiya H, Kawamura F, Kuroiwa T (2006) Isolated chloroplast division machinery can actively constrict after stretching. Science 313:1435–1438CrossRefPubMedGoogle Scholar
  56. Yoshida Y, Kuroiwa H, Hirooka S, Fujiwara T, Ohnuma M, Yoshida M, Misumi O, Kawano S, Kuroiwa T (2009) The bacterial ZapA-like protein ZED is required for mitochondrial division. Curr Biol 19:1491–1497CrossRefPubMedGoogle Scholar
  57. Yoshida Y, Kuroiwa H, Misumi O, Yoshida M, Ohnuma M, Fujiwara T, Yagisawa F, Hirooka S, Imoto Y, Matsuhita K, Kawano S, Kuroiwa T (2010) Chloroplasts divide by contraction of a bundle of nanofilaments consisting of polyglucan. Science 329:949–953CrossRefPubMedGoogle Scholar
  58. Yoshida M, Yoshida Y, Fujiwara T, Misumi O, Kuroiwa H, Kuroiwa T (2011) Proteomic comparison between interphase and metaphase of isolated chloroplasts of Cyanidioschyzon merolae (Cyanidiophyceae, Rhodophyta). Phycol Res 59:1–15CrossRefGoogle Scholar
  59. Yoshida Y, Miyagishima SY, Kuroiwa H, Kuroiwa T (2012) The plastid-dividing machinery: formation, constriction and fission. Curr Opi Pant Biol 15:714–721CrossRefGoogle Scholar
  60. Yoshida Y, Fujiwara T, Imoto Y, Yoshida M, Ohnuma M, Hirooka S, Misumi O, Kuroiwa H, Kuroiwa T (2013) The kinesin-like protein TOP promotes aurora localisation and induces mitochondrial, chloroplast and nuclear division. J Cell Sci 126:2392–2400CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Division of Organelle Homeostasis, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
  2. 2.Laboratory for Single Cell Gene DynamicsQuantitative Biology CenterOsakaJapan

Personalised recommendations