Advertisement

Regulation of Organelle and Cell Division by Cytoskeletal and Motor Proteins in Cyanidioschyzon merolae

  • Yamato YoshidaEmail author
  • Yuuta Imoto
Chapter

Abstract

During cell proliferation, many types of organelles must be correctly distributed into daughter cells before cytokinesis. Pioneering microscopic and molecular physiological experiments revealed that organelle proliferation and segregation into daughter cells of Cyanidioschyzon merolae are tightly regulated. The first breakthroughs were achieved using synchronized cell cultures treated with cell-cycle inhibitors, which enabled elucidation of the sequential patterns of organelle divisions within the cell division cycle. In addition, the dynamics of organelle movements during cell division suggested that they were mediated by the cytoskeletal network and motor proteins. Recent state-of-the-art investigations into the molecular functions of a kinesin-like protein (TOP) and a mitotic kinase (AUR) have revealed that an integrated regulatory mechanism controls the division of many types of organelles. Transcriptomic and proteomic analyses suggest that C. merolae cells lack a classical actomyosin-based cytokinesis system. However, eukaryotic elongation factor 1 alpha (eEF-1α) is specifically and spatiotemporally enriched at the cell division site during cytokinesis, suggesting that C. merolae cells utilize an evolutionarily ancient cell division system.

Keywords

Aurora serine/threonine mitotic kinase (AUR) Cyanidioschyzon merolae Cytokinesis Eukaryotic elongation factor 1 alpha (eEF-1α) Microtubules Spindle apparatus Kinesin superfamily protein Organelle division Organelle segregation 

Notes

Acknowledgments

This work was supported by a Human Frontier Science Program Long Term Fellowship (LT000356/2011-L to Y.Y.) and a grant from the Japan Society for the Promotion of Science Fellowship (no. 14J04556 to Y.I.).

References

  1. Bunai F, Ando K, Ueno H, Numata O (2006) Tetrahymena eukaryotic translation elongation factor 1A (eEF1A) bundles filamentous actin through dimer formation. J Biochem 140:393–399. doi.org/10.1093/jb/mvj169 CrossRefPubMedGoogle Scholar
  2. Durso NA, Cyr RJ (1994) A calmodulin-sensitive interaction between microtubules and a higher plant homolog of elongation factor-1 alpha. Plant Cell 6:893–905. https://doi.org/10.1105/tpc.6.6.893 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Fujimoto H, Mabuchi I (2010) Elongation factors are involved in cytokinesis of sea urchin eggs. Genes Cells 15:123–135. https://doi.org/10.1111/j.1365-2443.2009.01370.x CrossRefPubMedGoogle Scholar
  4. Fujiwara T, Misumi O, Tashiro K et al (2009) Periodic gene expression patterns during the highly synchronized cell nucleus and organelle division cycles in the unicellular red alga Cyanidioschyzon merolae. DNA Res 16:59–72. https://doi.org/10.1093/dnares/dsn032 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Hirokawa N (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279:519–526. https://doi.org/10.1126/science.279.5350.519 CrossRefPubMedGoogle Scholar
  6. Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009) Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 10:682–696. https://doi.org/10.1038/nrm2774 CrossRefPubMedGoogle Scholar
  7. Imoto Y, Fujiwara T, Yoshida Y et al (2010) Division of cell nuclei, mitochondria, plastids, and microbodies mediated by mitotic spindle poles in the primitive red alga Cyanidioschyzon merolae. Protoplasma 241:63–74. https://doi.org/10.1007/s00709-010-0107-y CrossRefPubMedGoogle Scholar
  8. Imoto Y, Nishida K, Yagisawa F et al (2011) Involvement of elongation factor-1α in cytokinesis without actomyosin contractile ring in the primitive red alga Cyanidioschyzon merolae. Cytologia 76:431–437. https://doi.org/10.1508/cytologia.76.431 CrossRefGoogle Scholar
  9. Kato S, Imoto Y, Ohnuma M et al (2011) Aurora kinase of the red alga Cyanidioschyzon merolae is related to both mitochondrial division and mitotic spindle formation. Cytologia 76:465–472CrossRefGoogle Scholar
  10. Kobayashi Y, Kanesaki Y, Tanaka A et al (2009) Tetrapyrrole signal as a cell-cycle coordinator from organelle to nuclear DNA replication in plant cells. Proc Natl Acad Sci U S A 106:803–807. https://doi.org/10.1073/pnas.0804270105 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kobayashi Y, Imamura S, Hanaoka M, Tanaka K (2011) A tetrapyrrole-regulated ubiquitin ligase controls algal nuclear DNA replication. Nat Cell Biol 13:483–487. https://doi.org/10.1038/ncb2203 CrossRefPubMedGoogle Scholar
  12. Maruyama S, Kuroiwa H, Miyagishima S et al (2007) Centromere dynamics in the primitive red alga Cyanidioschyzon merolae. Plant J 49:1122–1129. https://doi.org/10.1111/j.1365-313X.2006.03024.x CrossRefPubMedGoogle Scholar
  13. Matsuzaki M, Misumi O, Shin-I T et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657. https://doi.org/10.1038/nature02398 CrossRefPubMedGoogle Scholar
  14. Moriyama T, Tajima N, Sekine K, Sato N (2014) Localization and phylogenetic analysis of enzymes related to organellar genome replication in the unicellular rhodophyte Cyanidioschyzon merolae. Genome Biol Evol 6:228–237. https://doi.org/10.1093/gbe/evu009 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Nishida K, Yagisawa F, Kuroiwa H et al (2005) Cell cycle-regulated, microtubule-independent organelle division in Cyanidioschyzon merolae. Mol Biol Cell 16:2493–2502. https://doi.org/10.1091/mbc.E05 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Numata O, Kurasawa Y, Gonda K, Watanabe Y (2000) Tetrahymena elongation factor-1α is localized with calmodulin in the division furrow. J Biochem 127:51–56. https://doi.org/10.1093/oxfordjournals.jbchem.a022583 CrossRefPubMedGoogle Scholar
  17. Shiina N, Gotoh Y, Kubomura N et al (1994) Microtubule severing by elongation factor 1. Science 266:282–285. https://doi.org/10.1126/science.7939665 CrossRefPubMedGoogle Scholar
  18. Sumiya N, Fujiwara T, Era A, Miyagishima S (2016) Chloroplast division checkpoint in eukaryotic algae. Proc Natl Acad Sci 113:E7629–E7638. https://doi.org/10.1073/pnas.1612872113 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Suzuki K, Kawazu T, Mita T, Takahashi H, Itoh R, Toda K, Kuroiwa T (1995) Cytokinesis by a contractile ring in the primitive red alga Cyanidium caldarium RK-1. Eur J Cell Biol 67:170–178Google Scholar
  20. Takahashi H, Takano H, Kuroiwa H et al (1998) A possible role for actin dots in the formation of the contractile ring in the ultra-micro alga Cyanidium caldarium RK-1. Protoplasma 202:91–104. https://doi.org/10.1007/BF01280878 CrossRefGoogle Scholar
  21. Yagisawa F, Fujiwara T, Kuroiwa H et al (2012) Mitotic inheritance of endoplasmic reticulum in the primitive red alga Cyanidioschyzon merolae. Protoplasma 249:1129–1135. https://doi.org/10.1007/s00709-011-0359-1 CrossRefPubMedGoogle Scholar
  22. Yagisawa F, Fujiwara T, Ohnuma M et al (2013) Golgi inheritance in the primitive red alga, Cyanidioschyzon merolae. Protoplasma 250:943–948. https://doi.org/10.1007/s00709-012-0467-6 CrossRefPubMedGoogle Scholar
  23. Yoshida Y, Kuroiwa H, Hirooka S et al (2009) The bacterial ZapA-like protein ZED is required for mitochondrial division. Curr Biol 19:1491–1497. https://doi.org/10.1016/j.cub.2009.07.035 CrossRefPubMedGoogle Scholar
  24. Yoshida Y, Fujiwara T, Imoto Y et al (2013) The kinesin-like protein TOP promotes aurora localisation and induces mitochondrial, chloroplast and nuclear division. J Cell Sci 126:2392–2400. https://doi.org/10.1242/jcs.116798 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Laboratory for Single Cell Gene DynamicsQuantitative Biology CenterOsakaJapan
  2. 2.Division of Organelle Homeostasis, Medical Institute of BioregulationKyushu UniversityHigashiku FukuokaJapan

Personalised recommendations