Advertisement

Polymer Gels pp 279-307 | Cite as

Design of Multifunctional Nanogels with Intelligent Behavior

  • G. Rimondino
  • C. Biglione
  • M. Martinelli
  • C. Alvarez Igarzábal
  • M. Strumia
Chapter
Part of the Gels Horizons: From Science to Smart Materials book series (GHFSSM)

Abstract

The design of polymeric nanogels with novel properties (dimensional structure, mechanics, high water content, and biocompatibility) continues to attract the attention of both scientific researchers and biomedical industries seeking new materials for application in areas such as tissue engineering, cell immobilization, separation of biomolecules or cells, biomedical implants, for use as diagnostic agents and in theranostics. The impressive progress in material and pharmaceutical sciences has given rise to the design of a broad range of nanogels of diverse size, architecture, and surface properties. The nanoscopic scale of these nanocarriers permits systemic (intravenous) or local (mucosal) administration and facilitates their diffusion within the cell. Moreover, surface functionalization methodologies can impart to the nanocarriers the ability to control pharmacokinetic and bio-distribution. Interest in intelligent nanogels has grown in recent years owing to their capacity to regulate behavior in response to external physical, chemical and biological stimuli. The different methods of nanogel synthesis and the adequate structure/property ratio for intelligent behavior and novel applications will be described and discussed in this chapter, presenting the most significant progress achieved in recent years in the field of nanocarriers in biomedical applications.

Keywords

Multifunctional nanogels Intelligent nanogels Polymeric nanogels Structure/property ratio 

References

  1. Abu Samah NH, Heard CM (2013) Enhanced in vitro transdermal delivery of caffeine using a temperature- and pH-sensitive nanogel, poly(NIPAM-co-AAc). Int J Pharm 453(2):630–640CrossRefPubMedGoogle Scholar
  2. Akiyoshi K, Deguchi S, Moriguchi N, Yamaguchi S, Sunamoto J (1993) Self-aggregates of hydrophobized polysaccharides in water. Formation and characteristics of nanoparticles. Macromolecules 26:3062–3068CrossRefGoogle Scholar
  3. An D et al (2015) Synthesis of surfactant-free hydroxypropylcellulose nanogel and its dual-responsive properties. Carbohydr Polym 134:385–389CrossRefPubMedGoogle Scholar
  4. Asadian-birjand M et al (2016) Transferrin decorated thermoresponsive nanogels as magnetic trap devices for circulating tumor cells. Macromol Rapid Commun 37:439–445CrossRefPubMedGoogle Scholar
  5. Asokan A, Cho MJ (2002) Exploitation of intracellular pH gradients in the cellular delivery of macromolecules. J Pharm Sci 91(4):903–913CrossRefPubMedGoogle Scholar
  6. Ayano E et al (2012) Poly(N-isopropylacrylamide)-PLA and PLA blend nanoparticles for temperature-controllable drug release and intracellular uptake. Colloids Surf, B 99:67–73CrossRefGoogle Scholar
  7. Bae KH, Mok H, Park TG (2008) Biomaterials synthesis, characterization, and intracellular delivery of reducible heparin nanogels for apoptotic cell death. Am J Hematol 29:3376–3383Google Scholar
  8. Baek SM et al (2015) Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles. Nanoscale 7:14191–14216Google Scholar
  9. Bhardwaj P et al (2009) Poly(acrylamide-co-2-acrylamido-2-methyl-1-propanesulfonic Acid) Nanogels made by inverse microemulsion polymerization. J Macromol Sci Part A 46(11):1083–1094CrossRefGoogle Scholar
  10. Bickerton S, Jiwpanich S, Thayumanavan S (2012) Interconnected roles of scaffold hydrophobicity, drug loading, and encapsulation stability in polymeric nanocarriers. Mol Pharm 9(12):3569–3578CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bilalis P et al (2016) Preparation of hybrid triple-stimuli responsive nanogels based on poly(L-histidine). J Polym Sci, Part A: Polym Chem 54(9):1278–1288CrossRefGoogle Scholar
  12. Boularas M et al (2015) Design of smart oligo(ethylene glycol)-based biocompatible hybrid microgels loaded with magnetic nanoparticles. Macromol Rapid Commun 36(1):79–83CrossRefPubMedGoogle Scholar
  13. Brazel CS (2009) Magnetothermally-responsive nanomaterials: combining magnetic nanostructures and thermally-sensitive polymers for triggered drug release. Pharm Res 26(3):644–656CrossRefPubMedGoogle Scholar
  14. Calderón M et al (2010) Functional dendritic polymer architectures as stimuli-responsive nanocarriers. Biochimie 92(9):1242–1251CrossRefPubMedGoogle Scholar
  15. Chacko RT et al (2012) Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv Drug Deliv Rev 64(9):836–851CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chem P, Brian P, Currently V (2012) Temperature-sensitive nanogels: poly(N-vinylcaprolactam) versus poly(N-isopropylacrylamide). Polym Chem 3:852CrossRefGoogle Scholar
  17. Chen T et al (2011) Preparation and characterization of thermosensitive organic–inorganic hybrid microgels with functional Fe3O4 nanoparticles as crosslinker. Polymer 52(1):172–179CrossRefGoogle Scholar
  18. Chen W et al (2013) In situ forming reduction-sensitive degradable nanogels for facile loading and triggered intracellular release of proteins. Biomacromol 14(4):1214–1222CrossRefGoogle Scholar
  19. Cheng R et al (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34(14):3647–3657CrossRefPubMedGoogle Scholar
  20. Chiang W et al (2013) Superparamagnetic hollow hybrid nanogels as a potential guidable vehicle system of stimuli-mediated MR imaging and multiple cancer therapeutics. Langmuir 29:6434–6443CrossRefPubMedGoogle Scholar
  21. Choi KY et al (2012) Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale 4(2):330–342CrossRefPubMedGoogle Scholar
  22. Cortez-Lemus NA, Licea-Claverie A (2015) Poly(N-vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular. Prog Polym SciGoogle Scholar
  23. Cuggino JC et al (2016) Responsive nanogels for application as smart carriers in endocytic pH-triggered drug delivery systems. Eur Polym J 78:14–24CrossRefGoogle Scholar
  24. Cuggino JC et al (2011) Thermosensitive nanogels based on dendritic polyglycerol and N-isopropylacrylamide for biomedical applications. Soft Matter 7(23):11259CrossRefGoogle Scholar
  25. Dailing EA et al (2015) Soft matter photopolymerizable nanogels as macromolecular precursors to covalently crosslinked water-based networks. Soft MatterGoogle Scholar
  26. Dürr S et al (2013) Magnetic nanoparticles for cancer therapy. Nanotechnol Rev 2(4):395–409CrossRefGoogle Scholar
  27. Fleige E, Quadir MA, Haag R (2012) Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev 64(9):866–884CrossRefPubMedGoogle Scholar
  28. Fuchs AV, Gemmell AC, Thurecht KJ (2015) Utilising polymers to understand diseases: advanced molecular imaging agents. Polym Chem 6:868–880CrossRefGoogle Scholar
  29. Ganta S et al (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J Controlled Release 126(3):187–204CrossRefGoogle Scholar
  30. Gerweck LE, Seetharaman K (1996) Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Can Res 56:1194–1198Google Scholar
  31. Giulbudagian M et al (2014) Fabrication of thermoresponsive nanogels by thermo-nanoprecipitation and in situ encapsulation of bioactives. Polym Chem 5:6909–6913CrossRefGoogle Scholar
  32. Gyarmati B, Nmethy R, Szilgyi A (2013) Reversible disulphide formation in polymer networks: a versatile functional group from synthesis to applications. Eur Polym J 49(6):1268–1286CrossRefGoogle Scholar
  33. Hatakeyama H, Akita H, Harashima H (2011) A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. Adv Drug Deliv Rev 63(3):152–160CrossRefPubMedGoogle Scholar
  34. Heffernan MJ, Murthy N (2009) Disulfide-crosslinked polyion micelles for delivery of protein therapeutics. Ann Biomed Eng 37(10):1993–2002CrossRefPubMedGoogle Scholar
  35. Hoffman AS et al (2000) Really smart bioconjugates of smart polymers and receptor proteins. J Biomed Mater Res 52(4):577–586CrossRefPubMedGoogle Scholar
  36. Hong JS et al (2008) Liposome-templated supramolecular assembly of responsive alginate nanogels. Langmuir 24(8):4092–4096CrossRefPubMedGoogle Scholar
  37. Hu J et al (2012) Recent advances in shape-memory polymers: structure, mechanism, functionality, modeling and applications. Prog Polym Sci 37(12):1720–1763CrossRefGoogle Scholar
  38. Hu Z, Cai T, Chi C (2010) Thermoresponsive oligo(ethylene glycol)-methacrylate-based polymers and microgels. Soft Matter 6:2115–2123CrossRefGoogle Scholar
  39. Iijima M, Nagasaki Y (2006) Synthesis of poly[N-isopropylacrylamide-g-poly(ethylene glycol)] with a reactive group at the poly(ethylene glycol) end and its thermosensitive self-assembling character. J Polym Sci, Part A: Polym Chem 44(4):1457–1469CrossRefGoogle Scholar
  40. Jafari M, Kaffashi B (2016) Pure and applied chemistry synthesis and characterization of a novel solvent- free dextran-HEMA-PNIPAM thermosensitive nanogel. Pure Appl Chem 53(2):68–74Google Scholar
  41. Jeong B, Kim SW, Bae YH (2002) Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev 54(1):37–51CrossRefPubMedGoogle Scholar
  42. Jiang Y et al (2014) Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering. Biomaterials 35(18):4969–4985CrossRefPubMedGoogle Scholar
  43. Kabanov AV, Vinogradov SV (2009) Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed 48(30):5418–5429CrossRefGoogle Scholar
  44. Kamaly N et al (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41(7):2971–3010CrossRefPubMedPubMedCentralGoogle Scholar
  45. Karimi M et al (2016) Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. R Soc Chem 45:1457–1501Google Scholar
  46. Khandare J et al (2012) Multifunctional dendritic polymers in nanomedicine: opportunities and challenges. Chem Soc Rev 41(7):2824–2848CrossRefPubMedGoogle Scholar
  47. Kuo C-Y et al (2015) Thermo- and pH-induced self-assembly of P(AA-b-NIPAAm-b-AA) triblock copolymers synthesized via RAFT polymerization. J Polym Sci, Part A: Polym Chem 54:1109–1118Google Scholar
  48. Lau ACW, Wu C (1999) Thermally sensitive and biocompatible poly(N-vinylcaprolactam): synthesis and characterization of high molar mass linear chains. Macromolecules 32:581–584CrossRefGoogle Scholar
  49. Lee C-F, Lin C-C, Chiu W-Y (2008) Thermosensitive and control release behavior of poly(N-isopropylacrylamide-co-acrylic acid) latex particles. J Polym Sci, Part A: Polym Chem 6:5734–5741CrossRefGoogle Scholar
  50. Li Z et al (2014) Sonochemical fabrication of dual-targeted redox-responsive smart microcarriers. ACS Appl Mater Interfaces 6(24):22166–22173CrossRefPubMedGoogle Scholar
  51. Liggins RT, Burt HM (2002) Polyether-polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations. Adv Drug Deliv Rev 54(2):191–202CrossRefPubMedGoogle Scholar
  52. Liu G, An Z (2014) Frontiers in the design and synthesis of advanced nanogels for nanomedicine. Polym Chem 5(5):1559CrossRefGoogle Scholar
  53. Liu G, Qiu Q, An Z (2012) Development of thermosensitive copolymers of poly(2-methoxyethyl acrylate-co-poly(ethylene glycol) methyl ether acrylate) and their nanogels synthesized by RAFT dispersion polymerization in water. Polym Chem 3:504CrossRefGoogle Scholar
  54. Liu J et al (2015) Design of hybrid nanovehicles for remotely triggered drug release: an overview. J Mater Chem B 3:6117–6147CrossRefGoogle Scholar
  55. Lu S et al (2013) Polyacrylamide hybrid nanogels for targeted cancer chemotherapy via co-delivery of gold nanoparticles and MTX. J Colloid Interface Sci 412:46–55CrossRefPubMedGoogle Scholar
  56. Lutz J-F (2011) Thermo-switchable materials prepared using the OEGMA-platform. Adv Mater 23(19):2237–2243CrossRefGoogle Scholar
  57. Madhusudana Rao K et al (2013) Novel thermo/pH sensitive nanogels composed from poly(N-vinylcaprolactam) for controlled release of an anticancer drug. Colloids Surf, B 102:891–897CrossRefGoogle Scholar
  58. Maya S et al (2013) Smart stimuli sensitive nanogels in cancer drug delivery and imaging: a review. Curr Pharm Des 19:7203–7218CrossRefPubMedGoogle Scholar
  59. McNeil SE (2005) Nanotechnology for the biologist. J Leukoc Biol 78(3):585–594CrossRefPubMedGoogle Scholar
  60. McPhee W, Tam KC, Pelton R (1993) Poly(N-isopropylacrylamide) latices prepared with sodium dodecyl sulfate. J Colloid Interface Sci 156:24–30CrossRefGoogle Scholar
  61. Meng F, Hennink WE, Zhong Z (2009) Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials 30(12):2180–2198CrossRefGoogle Scholar
  62. Merino S et al (2015) Nanocomposite hydrogels: 3D polymer-nanoparticle synergies for on-demand drug delivery. ACS Nano 9(5):4686–4697CrossRefPubMedGoogle Scholar
  63. Molina M et al (2015) Stimuli-responsive nanogel composites and their application in nanomedicine. Chem Soc Rev 44(17):6161–6186CrossRefPubMedGoogle Scholar
  64. Montoro SR, de Fátima Medeiros S, Alves GM (2014) Nanostructured hydrogels. Elsevier Inc.Google Scholar
  65. Morimoto N et al (2013) Self-assembled pH-sensitive cholesteryl pullulan nanogel as a protein delivery vehicle. Biomacromolecules 14(1):56–63CrossRefPubMedGoogle Scholar
  66. Motornov M et al (2010) Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog Polym Sci 35(1–2):174–211CrossRefGoogle Scholar
  67. Müllen K, Ober CK (2013) Polymers for advanced functional materials. In: Matyiazewski K, Möller M (eds) Polymer science: a comprehensive reference. Elsevier, Amsterdam, pp 1–502Google Scholar
  68. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12(11):991–1003CrossRefGoogle Scholar
  69. Nash MA et al (2012) Multiplexed enrichment and detection of malarial biomarkers using a stimuli-responsive iron oxide and gold nanoparticle reagent system. ACS Nano 6(8):6776–6785CrossRefPubMedPubMedCentralGoogle Scholar
  70. Nayak S, Andrew Lyon L (2005) Soft nanotechnology with soft nanoparticles. Angew Chem Int Ed 44(47):7686–7708CrossRefGoogle Scholar
  71. Oh JK et al (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci (Oxford) 33(4):448–477CrossRefGoogle Scholar
  72. Oh JK, Lee DI, Park JM (2009) Biopolymer-based microgels/nanogels for drug delivery applications. Prog Polym Sci (Oxford) 34(12):1261–1282CrossRefGoogle Scholar
  73. Online VA (2015) Multifunctional hybrid nanogels for theranostic applications. Soft Matter 11:8205–8216CrossRefGoogle Scholar
  74. Pelton RH, Chibante P (1986) Preparation of aqueous latices with N-isopropylacrylamide. Colloids Surf 20(3):247–256CrossRefGoogle Scholar
  75. Peng E, Wang F, Xue JM (2015) Nanostructured magnetic nanocomposites as MRI. J Mater Chem B: Mater Biol Med 00:1–36Google Scholar
  76. Peng J et al (2013) Controlled release of cisplatin from pH-thermal dual responsive nanogels. Biomaterials 34(34):8726–8740CrossRefPubMedGoogle Scholar
  77. Quesada-Perez M, Ahualli S, Martin-Molina A (2014) Temperature-sensitive nanogels in the presence of salt: explicit coarse-grained simulations. J Chem Phys 141(12)Google Scholar
  78. Raemdonck K, Demeester J, De Smedt S (2009) Advanced nanogel engineering for drug delivery. Soft Matter 5:707–715Google Scholar
  79. Rahimian K, Wen Y, Oh JK (2015) Redox-responsive cellulose-based thermoresponsive grafted copolymers and in-situ disulfide crosslinked nanogels. Polymer 72:387–394CrossRefGoogle Scholar
  80. Ramos J, Imaz A, Forcada J (2012) Temperature-sensitive nanogels: poly(N-vinylcaprolactam) versus poly(N-isopropylacrylamide). Polym Chem 3:852–856CrossRefGoogle Scholar
  81. Rayo E, Guerrero Q (2014) Administración De Fármacos, pp 17–38Google Scholar
  82. Romberg B, Hennink WE, Storm G (2008) Sheddable coatings for long-circulating nanoparticles. Pharm Res 25(1):55–71CrossRefPubMedGoogle Scholar
  83. Ryu JH et al (2012) Tumor-targeting multi-functional nanoparticles for theragnosis: new paradigm for cancer therapy. Adv Drug Deliv Rev 64(13):1447–1458CrossRefPubMedGoogle Scholar
  84. Rzaev ZMO, Dinçer S, Pişkin E (2007) Functional copolymers of N-isopropylacrylamide for bioengineering applications. Prog Polym Sci (Oxford) 32(5):534–595CrossRefGoogle Scholar
  85. Sahiner N et al (2006) Microgel, nanogel and hydrogel-hydrogel semi-IPN composites for biomedical applications: synthesis and characterization. Colloid Polym Sci 284(10):1121–1129CrossRefGoogle Scholar
  86. Saito G, Swanson JA, Lee K-D (2003) Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv Drug Deliv Rev 55(2):199–215CrossRefPubMedGoogle Scholar
  87. Salehi R, Rasouli S, Hamishehkar H (2015) Smart thermo/pH responsive magnetic nanogels for the simultaneous delivery of doxorubicin and methotrexate. Int J Pharm 487:274–284CrossRefPubMedGoogle Scholar
  88. Sarika PR, James NR (2015) Preparation and characterisation of gelatin-gum arabic aldehyde nanogels via inverse miniemulsion technique. Int J Biol Macromol 76:181–187CrossRefPubMedGoogle Scholar
  89. Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17(2):163–249CrossRefGoogle Scholar
  90. Shi L et al (2008) Poly (N-vinylformamide) nanogels capable of pH-sensitive protein release. Society 41:6546–6554Google Scholar
  91. Sierra-Martin B, Fernandez-Barbero A (2015) Multifunctional hybrid nanogels for theranostic applications. Soft Matter 11(42):8205–8216CrossRefPubMedGoogle Scholar
  92. Singh N et al (2007) Au nanoparticle templated synthesis of pNIPAm nanogels. Chem Mater 19(4):719–726CrossRefGoogle Scholar
  93. Sivaram AJ et al (2015) Nanogels for delivery, imaging and therapy. Wiley Interdisc Rev: Nanomed NanobiotechnolGoogle Scholar
  94. Teyssier J et al (2015) Photonic crystals cause active colour change in chameleons. Nature 1–7Google Scholar
  95. Thomas CS, Xu L, Olsen BD (2012) Kinetically controlled nanostructure formation in self-assembled globular protein-polymer diblock copolymers. Biomacromol 13(9):2781–2792CrossRefGoogle Scholar
  96. Thoniyot P et al (2015) Nanoparticle-hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv Sci 2(1–2)Google Scholar
  97. Vancoillie G, Frank D, Hoogenboom R (2014) Thermoresponsive poly(oligo ethylene glycol acrylates). Prog Polym Sci 39(6):1074–1095CrossRefGoogle Scholar
  98. Verma J, Lal S, Van Noorden CJF (2014) Nanoparticles for hyperthermic therapy: synthesis strategies and applications in glioblastoma. Int J Nanomed 9:2863–2877Google Scholar
  99. Vigderman L, Zubarev ER (2013) Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv Drug Deliv Rev 65(5):663–676CrossRefPubMedGoogle Scholar
  100. Vihola H et al (2005) Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials 26(16):3055–3064CrossRefPubMedGoogle Scholar
  101. Vinogradov S, Batrakova E, Kabanov A (1999) Poly(ethylene glycol)-polyethyleneimine NanoGel(TM) particles: novel drug delivery systems for antisense oligonucleotides. Colloids Surf, B 16:291–304CrossRefGoogle Scholar
  102. Wang Y et al (2014) Investigation of dual-sensitive nanogels based on chitosan and N-isopropylacrylamide and its intelligent drug delivery of 10-hydroxycamptothecine. Drug Deliv 7544:1–11Google Scholar
  103. Wang Y et al (2013) Poly(vinylcaprolactam)-based biodegradable multiresponsive microgels for drug delivery. Biomacromolecules 14(9):3034–3046CrossRefPubMedGoogle Scholar
  104. Witting M et al (2015) Thermosensitive dendritic polyglycerol-based nanogels for cutaneous delivery of biomacromolecules. Nanomed Nanotechnol Biol Med 11(5):1179–1187CrossRefGoogle Scholar
  105. Wu L, Glebe U, Böker A (2015) Surface-initiated controlled radical polymerizations from silica nanoparticles, gold nanocrystals, and bionanoparticles. Polym Chem 6(29):5143–5184CrossRefGoogle Scholar
  106. Wu W et al (2010a) Chitosan-based responsive hybrid nanogels for integration of optical pH-sensing, tumor cell imaging and controlled drug delivery. Biomaterials 31(32):8371–8381CrossRefPubMedGoogle Scholar
  107. Wu W et al (2010b) Core-shell hybrid nanogels for integration of optical temperature-sensing, targeted tumor cell imaging, and combined chemo-photothermal treatment. Biomaterials 31(29):7555–7566CrossRefPubMedGoogle Scholar
  108. Xu LQ et al (2009) Simultaneous “click chemistry” and atom transfer radical emulsion polymerization and prepared well-defined cross-linked nanoparticles. Macromolecules 42(17):6385–6392CrossRefGoogle Scholar
  109. Yallapu MM, Jaggi M, Chauhan SC (2011) Design and engineering of nanogels for cancer treatment. Drug Discovery Today 16(9–10):457–463CrossRefPubMedPubMedCentralGoogle Scholar
  110. Yeh C (2014) Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem Soc Rev 43(17):6254–6287CrossRefPubMedGoogle Scholar
  111. Zhan F et al (2011) Acid-activatable prodrug nanogels for efficient intracellular doxorubicin release. Biomacromolecules 12(10):3612–3620CrossRefPubMedGoogle Scholar
  112. Zhang X et al (2015) Micro- and nanogels with labile crosslinks-from synthesis to biomedical applications. Chem Soc Rev 44(7):1948–1973CrossRefPubMedGoogle Scholar
  113. Zhang Z et al (2014) Near infrared laser induced targeted cancer therapy using thermo-responsive polymer encapsulated gold nanorods. J Am Chem Soc 136:7317–7326CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • G. Rimondino
    • 1
  • C. Biglione
    • 1
  • M. Martinelli
    • 1
  • C. Alvarez Igarzábal
    • 1
  • M. Strumia
    • 1
  1. 1.Departamento de Química Orgánica, Facultad de Ciencias QuímicasInstituto de Investigación y Desarrollo En Ingeniería de Procesos y Química Aplicada (IPQA), CONICET, Universidad Nacional de Córdoba. Ciudad UniversitariaCórdobaArgentina

Personalised recommendations