Advertisement

Polymer Gels pp 185-195 | Cite as

Gel-Based Approaches in Genomic and Proteomic Sciences

  • Rafael A. Baraúna
  • Diego A. Graças
  • Joriane T. C. Alves
  • Ana Lídia Q. Cavalcante
  • Artur Silva
Chapter
Part of the Gels Horizons: From Science to Smart Materials book series (GHFSSM)

Abstract

In the last few years, many advances have been made in genomic and proteomic sciences using gel-based technologies. Some of these technologies still have valuable applications for genomic and proteomic studies. Two-dimensional gel electrophoresis (2DE), for example, is a protein fractionation technique used to analyze the differential expression of genes and to characterize post-translational modifications. On the other hand, pulsed-field gel electrophoresis (PFGE) is used to determine the size of prokaryotic genomes, for the detection of plasmids, and in epidemiological studies of pathogenic microorganisms. In this context, this chapter aims to describe the functionality of gel-based techniques, such as 2DE and PFGE, as well as their pros and cons, and advances that have been made and their primary applications in the fields of genomics and proteomics of microorganisms.

Keywords

Proteomics Genomics 2DE PFGE 

References

  1. Aires J, Anglade P, Baraige F, Zagorec M, Champomier-Vergès M, Butel M (2010) Proteomic comparison of the cytosolic proteins of three Bifidobacterium longum human isolates and B. longum NCC2705. BMC Microbiol 10:29CrossRefPubMedPubMedCentralGoogle Scholar
  2. Almácegui RJ, Navarro CA, Paradela A, Albar JP, von Bernath D, Jerez CA (2014) New copper resistance determinants in the extremophile Acidithiobacillus ferrooxidans: a quantitative proteomic analysis. J Proteome Res 13(2):946–960CrossRefGoogle Scholar
  3. Bancroft I, Wolk CP (1988) Pulsed homogeneous orthogonal field gel electrophoresis (PHOGE). Nucl Acids Res 16(15):7405–7418CrossRefPubMedGoogle Scholar
  4. Bart-Delabesse E, Boiron P, Carlotti A, Dupont B (1993) Candida albicans genotyping in studies with patients with AIDS developing resistance to fluconazole. J Clin Microbiol 31(11):2933–2937PubMedPubMedCentralGoogle Scholar
  5. Bengtsson S, Naseer U, Sundsfjord A, Kahlmeter G, Sundqvist M (2012) Sequence types and plasmid carriage of uropathogenic Escherichia coli devoid of phenotypically detectable resistance. J Antimicrob Chemother 67(1):69–73CrossRefPubMedGoogle Scholar
  6. Caetano-Allóles G (1993) Amplyfing DNA with arbitrary oligonucleotide primers. Genome Res 3:85–94CrossRefGoogle Scholar
  7. Carneiro AR, Ramos RTJ, Dall’Agnol H, Pinto AC, Soares SC, Santos AR, Guimarães LC, Almeida SS, Baraúna RA, Graças DA et al (2012) Genome sequence of Exiguobacterium antarcticum B7, isolated from a biofilm in Ginger Lake, King George Island, Antarctica. J Bacteriol 194(23):6689–6690Google Scholar
  8. Crick F (1970) Central dogma of molecular biology. Nature 227:561–563CrossRefPubMedGoogle Scholar
  9. Dall’Agnol HPMB, Baraúna RA, de Sá PHCG, Ramos RTJ, Nóbrega F, Nunes CIP, Graças DA, Carneiro AR, Santos DM, Pimenta AMC et al. (2014) Omics profiles used to evaluate the gene expression of Exiguobacterium antarcticum B7 during cold adaptation. BMC Genomics 15:986Google Scholar
  10. Davis MA, Hancock DD, Besser TE, Call DR (2003) Evaluation of pulsed-field gel electrophoresis as a tool for determining the degree of genetic relatedness between strains of Escherichia coli O157:H7. J Clin Microbiol 41(5):1843–1849CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dekker L, Arsène-Ploetze F, Santini JM (2016) Comparative proteomics of Acidithiobacillus ferrooxidans grown in the presence and absence of uranium. Res Microbiol 167(3):234–239CrossRefPubMedGoogle Scholar
  12. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenza Rd. Science 269(5223):496–512CrossRefPubMedPubMedCentralGoogle Scholar
  13. Folster JP, Pecic G, Rickert R, Taylor J, Zhao S, Fedorka-Cray PJ, Whichard J, Mcdermott P (2012) Characterization of multi-resistant Salmonella enterica serovar Heidelberg from a ground Turkey-associated outbreak in the United States in 2011. Antimicrob Agents Chemother 56(6):3465–3466CrossRefPubMedPubMedCentralGoogle Scholar
  14. García-Descalzo L, García-Lopez E, Alcázar A, Baquero F, Cid D (2014) Proteomic analysis of the adaptation to warming in the Antarctic bacteria Shewanella frigidimarina. Biochemica et Biophysica Acta (BBA)—Proteins Proteomics 1844(12):2229–2240Google Scholar
  15. Ge Y, Wang DZ, Chiu JF, Cristobal S, Sheehan D, Silvestre F, Peng X, Li H et al (2013) Environmental OMICS: current status and future directions. J Integr OMICS 3(2):75–87CrossRefGoogle Scholar
  16. Gulez G, Altintaş A, Fazli M, Dechesne A, Workman CT, Tolker-Nielsen T, Smets BF (2014) Colony morphology and transcriptome profiling of Pseudomonas putida KT2440 and its mutants deficient in alginate of all EPS synthesis under controlled matric potentials. MicrobiologyOpen 3(4):457–469CrossRefPubMedPubMedCentralGoogle Scholar
  17. Heintz N, Gong S (2001) Working with bacterial artificial chromosomes and other high-capacity vectors. In: Green MR, Sambrook J (eds) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, p 301Google Scholar
  18. Hoogland C, Mostaguir K, Appel RD, Lisacek F (2008) The World-2DPAGE Constellation to promote and publish gel-based proteomics data through the ExPASy server. J Proteomics 71(2):245–248CrossRefPubMedGoogle Scholar
  19. Ichiyama S, Ohta M, Shimokata K, Kato N, Takeuchi J (1991) Genomic DNA fingerprinting by pulsed-field gel electrophoresis as an epidemiological marker for study of nosocomial infections caused by methicillin-resistant Staphylococcus aureus. J Clin Microbiol 29(12):2690–2695PubMedPubMedCentralGoogle Scholar
  20. Kuska B (1998) Beer, Bethesda, and biology: how “genomics” came into being. J Natl Cancer Inst 90(2):93CrossRefPubMedGoogle Scholar
  21. Mangold S, Jonna V, Dopson M (2013) Response of Acidithiobacillus caldus toward suboptimal pH conditions. Extremophiles 17(4):689–696CrossRefPubMedGoogle Scholar
  22. Marouga R, David S, Hawkins E (2005) The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 382:669–678CrossRefPubMedGoogle Scholar
  23. Morimoto H, Kuwano M, Kasahara Y (2013) Gene expression profiling of Pseudomonas putida F1 after exposure to aromatic hydrocarbon in soil by using proteome analysis. Arch Microbiol 195(12):805–813CrossRefPubMedGoogle Scholar
  24. Nair S, Poh CL, Lim YS, Tay L, Goh KT (1994) Genome fingerprinting of Salmonella typhi by pulsed-field gel electrophoresis for subtyping common phage types. Epidemiol Infect 113(3):391–402CrossRefPubMedPubMedCentralGoogle Scholar
  25. Najdenski H, Iteman I, Carniel E (1994) Efficient subtyping of pathogenic Yersinia enterocolitica strains by pulsed-field gel electrophoresis. J Clin Microbiol 32:2913–2920PubMedPubMedCentralGoogle Scholar
  26. O’Farrell (1975) High resolution two-dimensional electrophoresis of protein. J Biol Chem 250(10):4007–4021Google Scholar
  27. Ouyang J, Liu Q, Li B, Ao J, Chen X (2013) Proteomic analysis of differential protein expression in Acidithiobacillus ferroxidans grown on ferrous iron or elemental sulfur. Ind J Microbiol 53(1):56–62CrossRefGoogle Scholar
  28. Petrak J, Ivanek R, Toman O, Cmejla R, Cmejlova J, Vyoral D, Zivny J, Vulpe CD (2008) Déjà vu in proteomics. A hit parade of repeatedly identified differentially expressed proteins. Proteomics 8(9):1744–1749CrossRefPubMedGoogle Scholar
  29. Poirier I, Hammann P, Kuhn L, Bertrand M (2013) Strategies developed by the marine bacterium Pseudomonas fluorescens BA3SM1 to resist metals: a proteome analysis. Aquat Toxicol 128:215–232CrossRefPubMedGoogle Scholar
  30. Pooideh M, Jabbarzadeh I, Ranjbar R, Saifi M (2015) Molecular epidemiology of Mycobacterium tuberculosis isolates in 100 patients with tuberculosis using pulsed field gel electrophoresis. Jundishapur J Microbiol 8(7):e18274PubMedPubMedCentralGoogle Scholar
  31. Ray P, Girard V, Gault M, Job C, Bonneu M, Mandrand-Berthelot MA, Singh SS, Job D, Rodrigue A (2013) Pseudomonas putida KT2440 response to nickel or cobalt induced stress by quantitative proteomics. Metallomics 5:68–79CrossRefPubMedGoogle Scholar
  32. Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37(1):67–75CrossRefPubMedGoogle Scholar
  33. Soll DR (2000) The ins and outs of DNA fingerprinting the infectious fungi. Clin Microbiol Rev 13:322–370CrossRefGoogle Scholar
  34. Sommer MO, Church GM, Dantas G (2010) A functional metagenomic approach for expanding the synthetic biology toolbox for biomass conversion. Mol Syst Biol 6:360CrossRefPubMedPubMedCentralGoogle Scholar
  35. Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M, Hearn J, Emili A, Xie XS (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329(5991):533–538CrossRefPubMedPubMedCentralGoogle Scholar
  36. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33(9):2233–2239PubMedPubMedCentralGoogle Scholar
  37. Vera M, Krok B, Bellenberg S, Sand W, Poetsch A (2013) Shotgun proteomics study of early biofilm formation process of Acidithiobacillus ferrooxidans ATCC 23270 on pyrite. Proteomics 13(7):1133–1144CrossRefPubMedGoogle Scholar
  38. Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL (1995) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50Google Scholar
  39. Ying BW, Yama K, Kitahara K, Yomo T (2016) The Escherichia coli transcriptome linked to growth fitness. Genom Data 7:1–3CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Rafael A. Baraúna
    • 1
  • Diego A. Graças
    • 1
  • Joriane T. C. Alves
    • 1
  • Ana Lídia Q. Cavalcante
    • 1
  • Artur Silva
    • 1
  1. 1.Institute of Biological Sciences, Center of Genomics and Systems Biology, Laboratory of Genomics and BioinformaticsFederal University of ParáBelémBrazil

Personalised recommendations