Hydrogels pp 87-112 | Cite as

Hydrogel-Based Strategies for Stem Cell Therapy

  • Shuaiqiang Zhang
  • Yan Nie
  • Hongyan Tao
  • Zongjin LiEmail author
Part of the Gels Horizons: From Science to Smart Materials book series (GHFSSM)


Stem cells from different sources provide considerable expectation for applications in tissue engineering and regenerative medicine because of their ability to proliferate and differentiate into functional cells. However, poor cell engraftment and survival after transplantation are key factors limiting the current stem cell-based therapy. The utilization of engineered microenvironments with synthetic biomaterials has been progressively successful in controlling the transplanted cells fate by imitating the native stem cell niche. Recently, synthetic 3D extracellular matrices (ECMs) have been extensively explored as scaffolds for tissue regeneration by emulating the components of natural stem cell niche to minimize implanted cell death. For their tunable tissue-like properties, biodegradability, and biocompatibility in all different forms of biomaterials, hydrogels are most normally used as substrates and scaffolds, which serve as a promising cell delivery vehicle to illustrate stem cell biology. Here, we will focus on recent advances in generating hydrogel, as well as the application of hydrogel for stem cell-based therapy. Finally, hydrogel-based controlled-release strategies for improving therapeutic efficiency of stem cells will be discussed.


Hydrogel Stem cell Stem cell therapy Extracellular matrix Microenvironments 



This work was partially supported by grants from the National Natural Science Foundation of China (81671734, 81371620, 81320108014), National Key R & D Program of China (2017YFA0103200), and Key Projects of Tianjin Science and Technology Support Program.


  1. Allcock HR (2012) Polyphosphazene elastomers, gels, and other soft materials. Soft Matter 8:7521–7532CrossRefGoogle Scholar
  2. Anderson SB, Lin CC, Kuntzler DV, Anseth KS (2011) The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels. Biomaterials 32:3564–3574PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bakota EL, Wang Y, Danesh FR, Hartgerink JD (2011) Injectable multidomain peptide nanofiber hydrogel as a delivery agent for stem cell secretome. Biomacromolecules 12:1651–1657PubMedPubMedCentralCrossRefGoogle Scholar
  4. Banerjee SS, Aher N, Patil R, Khandare J (2012) Poly(ethylene glycol)-prodrug conjugates: concept, design, and applications. J Drug Delivery 2012:103973CrossRefGoogle Scholar
  5. Bardajee GR, Hooshyar Z (2013) A novel biocompatible magnetic iron oxide nanoparticles/hydrogel based on poly (acrylic acid) grafted onto starch for controlled drug release. J Polym Res 20:1–13Google Scholar
  6. Bueno VB, Bentini R, Catalani LH, Petri DF (2013) Synthesis and swelling behavior of xanthan-based hydrogels. Carbohydr Polym 92:1091–1099PubMedCrossRefPubMedCentralGoogle Scholar
  7. Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23:H41–H56PubMedPubMedCentralCrossRefGoogle Scholar
  8. Busilacchi A, Gigante A, Mattioli-Belmonte M, Manzotti S, Muzzarelli RA (2013) Chitosan stabilizes platelet growth factors and modulates stem cell differentiation toward tissue regeneration. Carbohydr Polym 98:665–676CrossRefPubMedGoogle Scholar
  9. Calderón MÁR, Zhao W (2014) Applications of polymer nanofibers in bio-materials, biotechnology and biomedicine: a review. WileyGoogle Scholar
  10. Cameron GJ, Alberts IL, Laing JH, Wess TJ (2002) Structure of type I and type III heterotypic collagen fibrils: an X-ray diffraction study. J Struct Biol 137:15–22PubMedCrossRefPubMedCentralGoogle Scholar
  11. Chen JP, Cheng TH (2009) Preparation and evaluation of thermo-reversible copolymer hydrogels containing chitosan and hyaluronic acid as injectable cell carriers. Polymer 50:107–116CrossRefGoogle Scholar
  12. Chen C, Wang Z, Li Z (2011) Thermoresponsive polypeptides from pegylated poly-l-glutamates. Biomacromolecules 12:2859–2863PubMedCrossRefPubMedCentralGoogle Scholar
  13. Cheng J, Deming TJ (2012) Synthesis of polypeptides by ring-opening polymerization of alpha-amino acid N-carboxyanhydrides. Top Curr Chem 310:1–26PubMedPubMedCentralGoogle Scholar
  14. Cho D-W, Lee J-S, Jang J, Jung JW, Park JH, Pati F (2015) Natural, synthetic and semi-synthetic polymers, Morgan & Claypool PublishersGoogle Scholar
  15. Choi KY, Min KH, Yoon HY, Kim K, Park JH, Kwon IC, Choi K, Jeong SY (2011) PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo. Biomaterials 32:1880–1889PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chu L-Y, Xie R, Ju X-J, Wang W (2013) Functional membranes with thermo-responsive hydrogel gates. Springer, pp. 111–133Google Scholar
  17. Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharide hydrogels for modified release formulations. J Control Release 119:5–24PubMedCrossRefPubMedCentralGoogle Scholar
  18. Dang LTH, Feric NT, Laschinger C, Chang WY, Zhang BY, Wood GA, Stanford WL, Radisic M (2014) Inhibition of apoptosis in human induced pluripotent stem cells during expansion in a defined culture using angiopoietin-1 derived peptide QHREDGS. Biomaterials 35:7786–7799PubMedPubMedCentralCrossRefGoogle Scholar
  19. Das N (2013) Preparation methods and properties of hydrogel: a review. Int J Pharm Pharm Sci 5:112–117Google Scholar
  20. de Moraes MA, Beppu MM (2013) Biocomposite membranes of sodium alginate and silk fibroin fibers for biomedical applications. J Appl Polym Sci 130:3451–3457CrossRefGoogle Scholar
  21. Dellatore SM, Garcia AS, Miller WM (2008) Mimicking stem cell niches to increase stem cell expansion. Curr Opin Biotechnol 19:534–540PubMedPubMedCentralCrossRefGoogle Scholar
  22. Deming TJ (2002) Methodologies for preparation of synthetic block copolypeptides: materials with future promise in drug delivery. Adv Drug Delivery Rev 54:1145–1155CrossRefGoogle Scholar
  23. Deng M, Kumbar SG, Wan Y, Toti US, Allcock HR, Laurencin CT (2010) Polyphosphazene polymers for tissue engineering: an analysis of material synthesis, characterization and applications. Soft Matter 6:3119CrossRefGoogle Scholar
  24. Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dragan ES (2014) Design and applications of interpenetrating polymer network hydrogels. a review. Chem Eng J 243:572–590CrossRefGoogle Scholar
  26. Elluru M, Ma HY, Hadjiargyrou M, Hsiao BS, Chu B (2013) Synthesis and characterization of biocompatible hydrogel using pluronics-based block copolymers. Polymer 54:2088–2095CrossRefGoogle Scholar
  27. Eshghi S, Schaffer DV (2008) Engineering microenvironments to control stem cell fate and function. The Stem Cell Research CommunityGoogle Scholar
  28. Feng X, Tonnesen MG, Mousa SA, Clark RA (2013) Fibrin and collagen differentially but synergistically regulate sprout angiogenesis of human dermal microvascular endothelial cells in 3-dimensional matrix. Int J Cell Biol 2013:231279PubMedPubMedCentralCrossRefGoogle Scholar
  29. Feng G, Zhang J, Li Y, Nie Y, Zhu D, Wang R, Liu J, Gao J, Liu N, He N, Du W, Tao H, Che Y, Xu Y, Kong D, Zhao Q, Li Z (2016) IGF-1 C Domain-modified hydrogel enhances cell therapy for AKI. J Am Soc NephrolGoogle Scholar
  30. Fullana MJ, Wnek GE (2012) Electrospun collagen and its applications in regenerative medicine. Drug Delivery Transl Res 2:313–322CrossRefGoogle Scholar
  31. Gao H, Wang N, Hu X, Nan W, Han Y, Liu W (2013a) Double hydrogen-bonding pH-sensitive hydrogels retaining high-strengths over a wide pH range. Macromol Rapid Commun 34:63–68PubMedCrossRefPubMedCentralGoogle Scholar
  32. Gao J, Zheng W, Zhang J, Guan D, Yang Z, Kong D, Zhao Q (2013b) Enzyme-controllable delivery of nitric oxide from a molecular hydrogel. Chem Commun (Camb) 49:9173–9175CrossRefGoogle Scholar
  33. Glotzbach JP, Wong VW, Levi B, Longaker MT, Gurtner GC (2012) Delivery strategies for stem cell-based therapy. J Healthc Eng 3:1–20CrossRefGoogle Scholar
  34. Gombotz WR, Wee SF (2012) Protein release from alginate matrices. Adv Drug Deliver Rev 64:194–205CrossRefGoogle Scholar
  35. Guvendiren M, Burdick JA (2013) Engineering synthetic hydrogel microenvironments to instruct stem cells. Curr Opin Biotechnol 24:841–846PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hager AS, Arendt EK (2013) Influence of hydroxypropylmethylcellulose (HPMC), xanthan gum and their combination on loaf specific volume, crumb hardness and crumb grain characteristics of gluten-free breads based on rice, maize, teff and buckwheat. Food Hydrocolloids 32:195–203CrossRefGoogle Scholar
  37. Harding SE, Smith IH, Lawson CJ, Gahler RJ, Wood S (2011) Studies on macromolecular interactions in ternary mixtures of konjac glucomannan, xanthan gum and sodium alginate. Carbohyd Polym 83:329–338CrossRefGoogle Scholar
  38. He L, Zuo Q, Xie S, Huang Y, Xue W (2011) Intelligent hydrogels for drug delivery system. Recent Pat Drug Delivery Formulation 5:265–274CrossRefGoogle Scholar
  39. He N, Xu Y, Du W, Qi X, Liang L, Wang Y, Feng G, Fan Y, Han Z, Kong D, Cheng Z, Wu JC, He Z, Li Z (2015) Extracellular matrix can recover the downregulation of adhesion molecules after cell detachment and enhance endothelial cell engraftment. Sci Rep 5:10902PubMedPubMedCentralCrossRefGoogle Scholar
  40. Heng BC, Cao T, Haider HK, Wang DZ, Sim EK, Ng SC (2004) An overview and synopsis of techniques for directing stem cell differentiation in vitro. Cell Tissue Res 315:291–303PubMedCrossRefPubMedCentralGoogle Scholar
  41. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliver Rev 64:18–23CrossRefGoogle Scholar
  42. Hu Y, You J-O, Auguste DT, Suo Z, Vlassak JJ (2011) Indentation: a simple, nondestructive method for characterizing the mechanical and transport properties of pH-sensitive hydrogels. J Mater Res 27:152–160CrossRefGoogle Scholar
  43. Huang J, Heise A (2013) Stimuli responsive synthetic polypeptides derived from N-carboxyanhydride (NCA) polymerisation. Chem Soc Rev 42:7373–7390PubMedCrossRefPubMedCentralGoogle Scholar
  44. Huang X, Huang X-J, Yu A-G, Wang C, Dai Z-W, Xu Z-K (2011) “Click chemistry” as a facile approach to the synthesis of polyphosphazene glycopolymers. Macromol Chem Phys 212:272–277CrossRefGoogle Scholar
  45. Huebsch N, Arany PR, Mao AS, Shvartsman D, Ali OA, Bencherif SA, Rivera-Feliciano J, Mooney DJ (2010) Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater 9:518–526PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hwang Y, Phadke A, Varghese S (2011) Engineered microenvironments for self-renewal and musculoskeletal differentiation of stem cells. Regenerative Med 6:505–524CrossRefGoogle Scholar
  47. Ibrahim S, Johan MR (2012) Thermolysis and conductivity studies of poly(ethylene oxide) (PEO) based polymer electrolytes doped with carbon nanotube. Int J Electrochem Sci 7:2596–2615Google Scholar
  48. Ichikawa H, Fukumori Y (2000) A novel positively thermosensitive controlled-release microcapsule with membrane of nano-sized poly(N-isopropylacrylamide) gel dispersed in ethylcellulose matrix. J Control Release 63:107–119PubMedCrossRefPubMedCentralGoogle Scholar
  49. Ingavle GC, Gehrke SH, Detamore MS (2014) The bioactivity of agarose PEGDA interpenetrating network hydrogels with covalently immobilized RGD peptides and physically entrapped aggrecan. Biomaterials 35:3558–3570PubMedPubMedCentralCrossRefGoogle Scholar
  50. Jaiswal A, Ghosh SS, Chattopadhyay A (2012) One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol). Chem Commun (Camb) 48:407–409CrossRefGoogle Scholar
  51. Jannesari M, Varshosaz J, Morshed M, Zamani M (2011) Composite poly(vinyl alcohol)/poly(vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs. Int J Nanomed 6:993–1003Google Scholar
  52. Jansen M, van Schaik FM, Ricker AT, Bullock B, Woods DE, Gabbay KH, Nussbaum AL, Sussenbach JS, Van den Brande JL (1983) Sequence of cDNA encoding human insulin-like growth factor I precursor. Nature 306:609–611PubMedCrossRefPubMedCentralGoogle Scholar
  53. Jin SP, Gu JX, Shi YJ, Shao KR, Yu XH, Yue GR (2013) Preparation and electrical sensitive behavior of poly (N-vinylpyrrolidone-co-acrylic acid) hydrogel with flexible chain nature. Eur Polym J 49:1871–1880CrossRefGoogle Scholar
  54. Jo S, Shin H, Mikos AG (2001) Modification of oligo(poly(ethylene glycol) fumarate) macromer with a GRGD peptide for the preparation of functionalized polymer networks. Biomacromolecules 2:255–261PubMedCrossRefPubMedCentralGoogle Scholar
  55. Kazanis I, ffrench-Constant C (2011) Extracellular matrix and the neural stem cell niche. Dev Neurobiol 71:1006–1017PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kempf M, Miyamura Y, Liu PY, Chen AC, Nakamura H, Shimizu H, Tabata Y, Kimble RM, McMillan JR (2011) A denatured collagen microfiber scaffold seeded with human fibroblasts and keratinocytes for skin grafting. Biomaterials 32:4782–4792PubMedCrossRefPubMedCentralGoogle Scholar
  57. Khetan S, Guvendiren M, Legant WR, Cohen DM, Chen CS, Burdick JA (2013) Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat Mater 12:458–465PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kim J, Kim IS, Cho TH, Lee KB, Hwang SJ, Tae G, Noh I, Lee SH, Park Y, Sun K (2007) Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials 28:1830–1837PubMedCrossRefPubMedCentralGoogle Scholar
  59. Kim J, Kim IS, Cho TH, Kim HC, Yoon SJ, Choi J, Park Y, Sun K, Hwang SJ (2010) In vivo evaluation of MMP sensitive high-molecular weight HA-based hydrogels for bone tissue engineering. J Biomed Mater Res A 95:673–681PubMedCrossRefPubMedCentralGoogle Scholar
  60. Kim IL, Mauck RL, Burdick JA (2011) Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials 32:8771–8782PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kinard LA, Kasper FK, Mikos AG (2012) Synthesis of oligo(poly(ethylene glycol) fumarate). Nat Protoc 7:1219–1227PubMedPubMedCentralCrossRefGoogle Scholar
  62. Komeri R, Thankam FG, Muthu J (2015) Influence of matrix and bulk behaviour of an injectable hydrogel on the survival of encapsulated cardiac cells. Rsc Adv 5:31439–31449CrossRefGoogle Scholar
  63. Korotych O, Samchenko Y, Boldeskul I, Ulberg Z, Zholobak N, Sukhodub L (2013) N-isopropylacrylamide-based fine-dispersed thermosensitive ferrogels obtained via in-situ technique. Mater Sci Eng C Mater Biol Appl 33:892–900PubMedCrossRefPubMedCentralGoogle Scholar
  64. Kost J, Langer R (2012) Responsive polymeric delivery systems. Adv Drug Delivery Rev 64:327–341CrossRefGoogle Scholar
  65. Kulkarni M, O’Loughlin A, Vazquez R, Mashayekhi K, Rooney P, Greiser U, O’Toole E, O’Brien T, Malagon MM, Pandit A (2014) Use of a fibrin-based system for enhancing angiogenesis and modulating inflammation in the treatment of hyperglycemic wounds. Biomaterials 35:2001–2010PubMedCrossRefPubMedCentralGoogle Scholar
  66. Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: a Review. Polym-Plast Technol 50:1475–1486CrossRefGoogle Scholar
  67. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126PubMedPubMedCentralCrossRefGoogle Scholar
  68. Leipzig ND, Wylie RG, Kim H, Shoichet MS (2011) Differentiation of neural stem cells in three-dimensional growth factor-immobilized chitosan hydrogel scaffolds. Biomaterials 32:57–64PubMedCrossRefPubMedCentralGoogle Scholar
  69. Leslie-Barbick JE, Saik JE, Gould DJ, Dickinson ME, West JL (2011) The promotion of microvasculature formation in poly(ethylene glycol) diacrylate hydrogels by an immobilized VEGF-mimetic peptide. Biomaterials 32:5782–5789PubMedCrossRefPubMedCentralGoogle Scholar
  70. Li H, Chen J, Lam KY (2007) Transient simulation of kinetics of electric-sensitive hydrogels. Biosens Bioelectron 22:1633–1641PubMedCrossRefPubMedCentralGoogle Scholar
  71. Li Z, Han Z, Wu JC (2009a) Transplantation of human embryonic stem cell-derived endothelial cells for vascular diseases. J Cell Biochem 106:194–199PubMedPubMedCentralCrossRefGoogle Scholar
  72. Li Z, Lee A, Huang M, Chun H, Chung J, Chu P, Hoyt G, Yang P, Rosenberg J, Robbins RC, Wu JC (2009b) Imaging survival and function of transplanted cardiac resident stem cells. J Am Coll Cardiol 53:1229–1240PubMedPubMedCentralCrossRefGoogle Scholar
  73. Li W, Yue J, Liu S (2012) Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites. Ultrason Sonochem 19:479–485PubMedCrossRefPubMedCentralGoogle Scholar
  74. Liu Z, Wang H, Wang Y, Lin Q, Yao A, Cao F, Li D, Zhou J, Duan C, Du Z, Wang Y, Wang C (2012) The influence of chitosan hydrogel on stem cell engraftment, survival and homing in the ischemic myocardial microenvironment. Biomaterials 33:3093–3106PubMedCrossRefPubMedCentralGoogle Scholar
  75. Liu J, Xu HH, Zhou H, Weir MD, Chen Q, Trotman CA (2013) Human umbilical cord stem cell encapsulation in novel macroporous and injectable fibrin for muscle tissue engineering. Acta Biomater 9:4688–4697PubMedCrossRefPubMedCentralGoogle Scholar
  76. Liu FY, Seuring J, Agarwal S (2014a) A non-ionic thermophilic hydrogel with positive thermosensitivity in water and electrolyte solution. Macromol Chem Phys 215:1466–1472CrossRefGoogle Scholar
  77. Liu H, Cheng J, Chen F, Hou F, Bai D, Xi P, Zeng Z (2014b) Biomimetic and cell-mediated mineralization of hydroxyapatite by carrageenan functionalized graphene oxide. ACS Appl Mater Interfaces 6:3132–3140PubMedCrossRefPubMedCentralGoogle Scholar
  78. Liu Y, Qi N, Song T, Jia M, Xia Z, Yuan Z, Yuan W, Zhang KQ, Sun B (2014c) Highly flexible and lightweight organic solar cells on biocompatible silk fibroin. ACS Appl Mater Interfaces 6:20670–20675PubMedCrossRefPubMedCentralGoogle Scholar
  79. Liu J, Willför S, Xu C (2015) A review of bioactive plant polysaccharides: biological activities, functionalization, and biomedical applications. Bioact Carbohydr Dietary Fibre 5:31–61CrossRefGoogle Scholar
  80. Lu Q, Zhang B, Li M, Zuo B, Kaplan DL, Huang Y, Zhu H (2011) Degradation mechanism and control of silk fibroin. Biomacromolecules 12:1080–1086PubMedPubMedCentralCrossRefGoogle Scholar
  81. Lu H, Wang J, Song Z, Yin L, Zhang Y, Tang H, Tu C, Lin Y, Cheng J (2014) Recent advances in amino acid N-carboxyanhydrides and synthetic polypeptides: chemistry, self-assembly and biological applications. Chem Commun (Camb) 50:139–155CrossRefGoogle Scholar
  82. Lutolf MP, Gilbert PM, Blau HM (2009) Designing materials to direct stem-cell fate. Nature 462:433–441PubMedPubMedCentralCrossRefGoogle Scholar
  83. Ma GP, Fang DW, Liu Y, Zhu XD, Nie J (2012) Electrospun sodium alginate/poly(ethylene oxide) core-shell nanofibers scaffolds potential for tissue engineering applications. Carbohyd Polym 87:737–743CrossRefGoogle Scholar
  84. Macaya D, Spector M (2012) Injectable hydrogel materials for spinal cord regeneration: a review. Biomed Mater 7:012001PubMedCrossRefPubMedCentralGoogle Scholar
  85. Madl CM, Mehta M, Duda GN, Heilshorn SC, Mooney DJ (2014) Presentation of BMP-2 mimicking peptides in 3D hydrogels directs cell fate commitment in osteoblasts and mesenchymal stem cells. Biomacromolecules 15:445–455PubMedPubMedCentralCrossRefGoogle Scholar
  86. Mallakpour S, Barati A (2011) Efficient preparation of hybrid nanocomposite coatings based on poly(vinyl alcohol) and silane coupling agent modified TiO2 nanoparticles. Prog Org Coat 71:391–398CrossRefGoogle Scholar
  87. Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, Boesel LF, Oliveira JM, Santos TC, Marques AP, Neves NM, Reis RL (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4:999–1030PubMedPubMedCentralCrossRefGoogle Scholar
  88. Masters KS (2011) Covalent growth factor immobilization strategies for tissue repair and regeneration. Macromol Biosci 11:1149–1163PubMedCrossRefPubMedCentralGoogle Scholar
  89. Mikac U, Baumgartner S, Sepe A, Kristl J (2013) MRI study of hydrophilic xanthan tablets with incorporated model drug. JB Principles Diffus Theor Exp Appl 18:1–5Google Scholar
  90. Milosavljevic NB, Ristic MD, Peric-Grujic AA, Filipovic JM, Strbac SB, Rakocevic Z, Kalagasidis Krusic MT (2011) Sorption of zinc by novel pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid. J Hazard Mater 192:846–854PubMedCrossRefPubMedCentralGoogle Scholar
  91. Mitra T, Sailakshmi G, Gnanamani A, Raja ST, Thiruselvi T, Gowri VM, Selvaraj NV, Ramesh G, Mandal AB (2011) Preparation and characterization of a thermostable and biodegradable biopolymers using natural cross-linker. Int J Biol Macromol 48:276–285PubMedCrossRefPubMedCentralGoogle Scholar
  92. Mogosanu GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 463:127–136PubMedCrossRefPubMedCentralGoogle Scholar
  93. Moloney TC, Fhlathartaigh MN, Kulkarni M, Pandit A, Dowd E (2015) Fibrin as a scaffold for delivery of GDNF overexpressing stem cells to the adult rat brain. ACS Biomater Sci Eng 1:559–566CrossRefGoogle Scholar
  94. Morimune S, Kotera M, Nishino T, Goto K, Hata K (2011) Poly(vinyl alcohol) nanocomposites with nanodiamond. Macromolecules 44:4415–4421CrossRefGoogle Scholar
  95. Murali R, Anumary A, Ashokkumar M, Thanikaivelan P, Chandrasekaran B (2011) Hybrid biodegradable films from collagenous wastes and natural polymers for biomedical applications. Waste Biomass Valor 2:323–335CrossRefGoogle Scholar
  96. Neffe AT, Wischke C, Racheva M, Lendlein A (2013) Progress in biopolymer-based biomaterials and their application in controlled drug delivery. Expert Rev Med Devices 10:813–833PubMedCrossRefPubMedCentralGoogle Scholar
  97. Obermeier B, Wurm F, Mangold C, Frey H (2011) Multifunctional Poly(ethylene glycol)s. Angew Chem Int Ed Engl 50:7988–7997PubMedCrossRefPubMedCentralGoogle Scholar
  98. Oh EJ, Choi JS, Kim H, Joo CK, Hahn SK (2011) Anti-Flt1 peptide—hyaluronate conjugate for the treatment of retinal neovascularization and diabetic retinopathy. Biomaterials 32:3115–3123PubMedCrossRefPubMedCentralGoogle Scholar
  99. Park H, Temenoff JS, Holland TA, Tabata Y, Mikos AG (2005) Delivery of TGF-beta1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 26:7095–7103PubMedCrossRefPubMedCentralGoogle Scholar
  100. Park H, Temenoff JS, Tabata Y, Caplan AI, Mikos AG (2007) Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials 28:3217–3227PubMedPubMedCentralCrossRefGoogle Scholar
  101. Peach MS, Kumbar SG, James R, Toti US, Balasubramaniam D, Deng M, Ulery B, Mazzocca AD, McCarthy MB, Morozowich NL, Allcock HR, Laurencin CT (2012) Design and optimization of polyphosphazene functionalized fiber matrices for soft tissue regeneration. J Biomed Nanotechnol 8:107–124PubMedCrossRefPubMedCentralGoogle Scholar
  102. Phadke A, Zhang C, Arman B, Hsu CC, Mashelkar RA, Lele AK, Tauber MJ, Arya G, Varghese S (2012) Rapid self-healing hydrogels. Proc Natl Acad Sci U S A 109:4383–4388PubMedPubMedCentralCrossRefGoogle Scholar
  103. Popa EG, Gomes ME, Reis RL (2011) Cell delivery systems using alginate–carrageenan hydrogel beads and fibers for regenerative medicine applications. Biomacromolecules 12:3952–3961PubMedCrossRefPubMedCentralGoogle Scholar
  104. Prestwich GD (2011) Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine. J Control Release 155:193–199PubMedPubMedCentralCrossRefGoogle Scholar
  105. Priya James H, John R, Alex A, Anoop KR (2014) Smart polymers for the controlled delivery of drugs—a concise overview. Acta Pharm Sin B 4:120–127PubMedPubMedCentralCrossRefGoogle Scholar
  106. Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliver Rev 64:49–60CrossRefGoogle Scholar
  107. Rayahin JE, Buhrman JS, Zhang Y, Koh TJ, Gemeinhart RA (2015) High and low molecular weight hyaluronic acid differentially influence macrophage activation. ACS Biomater Sci Eng 1:481–493PubMedPubMedCentralCrossRefGoogle Scholar
  108. Reis LA, Chiu LL, Liang Y, Hyunh K, Momen A, Radisic M (2012) A peptide-modified chitosan-collagen hydrogel for cardiac cell culture and delivery. Acta Biomater 8:1022–1036PubMedCrossRefPubMedCentralGoogle Scholar
  109. Roberts MJ, Bentley MD, Harris JM (2012) Chemistry for peptide and protein PEGylation. Adv Drug Deliver Rev 64:116–127CrossRefGoogle Scholar
  110. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Soliman EZ, Sorlie PD, Sotoodehnia N, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics C, Stroke Statistics S (2012) Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125: e2–e220Google Scholar
  111. Ruvinov E, Leor J, Cohen S (2010) The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model. Biomaterials 31:4573–4582PubMedCrossRefPubMedCentralGoogle Scholar
  112. Samchenko Y, Ulberg Z, Korotych O (2011) Multipurpose smart hydrogel systems. Adv Colloid Interface Sci 168:247–262PubMedCrossRefPubMedCentralGoogle Scholar
  113. Sharma S, Lohan S, Murthy RS (2014) Formulation and characterization of intranasal mucoadhesive nanoparticulates and thermo-reversible gel of levodopa for brain delivery. Drug Dev Ind Pharm 40:869–878PubMedCrossRefPubMedCentralGoogle Scholar
  114. Silva Nykänen VP, Nykänen A, Puska MA, Silva GG, Ruokolainen J (2011) Dual-responsive and super absorbing thermally cross-linked hydrogel based on methacrylate substituted polyphosphazene. Soft Matter 7:4414CrossRefGoogle Scholar
  115. Sipahigil O, Dortunc B (2001) Preparation and in vitro evaluation of verapamil HCl and ibuprofen containing carrageenan beads. Int J Pharm 228:119–128PubMedCrossRefPubMedCentralGoogle Scholar
  116. Snippert HJ, Clevers H (2011) Tracking adult stem cells. EMBO Rep 12:113–122PubMedPubMedCentralCrossRefGoogle Scholar
  117. Srivastava A, Shukla S, Kumar R (2016) Applications and characteristics properties of polymeric hydrogel. J Chem Chem Sci 6(2):166–181Google Scholar
  118. Tabar V, Studer L (2014) Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat Rev Genet 15:82–92PubMedPubMedCentralCrossRefGoogle Scholar
  119. Takehara N, Tsutsumi Y, Tateishi K, Ogata T, Tanaka H, Ueyama T, Takahashi T, Takamatsu T, Fukushima M, Komeda M, Yamagishi M, Yaku H, Tabata Y, Matsubara H, Oh H (2008) Controlled delivery of basic fibroblast growth factor promotes human cardiosphere-derived cell engraftment to enhance cardiac repair for chronic myocardial infarction. J Am Coll Cardiol 52:1858–1865PubMedCrossRefPubMedCentralGoogle Scholar
  120. Temenoff JS, Athanasiou KA, LeBaron RG, Mikos AG (2002) Effect of poly(ethylene glycol) molecular weight on tensile and swelling properties of oligo(poly(ethylene glycol) fumarate) hydrogels for cartilage tissue engineering. J Biomed Mater Res 59:429–437PubMedCrossRefPubMedCentralGoogle Scholar
  121. Teramoto H, Kojima K (2014) Production of Bombyx mori silk fibroin incorporated with unnatural amino acids. Biomacromolecules 15:2682–2690PubMedCrossRefPubMedCentralGoogle Scholar
  122. Terella A, Mariner P, Brown N, Anseth K, Streubel SO (2010) Repair of a calvarial defect with biofactor and stem cell-embedded polyethylene glycol scaffold. Arch Facial Plast Surg 12:166–171PubMedPubMedCentralCrossRefGoogle Scholar
  123. Thakur VK, Kessler MR (2015) Self-healing polymer nanocomposite materials: a review. Polymer 69:369–383CrossRefGoogle Scholar
  124. Thakur VK, Thakur MK (2014a) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15CrossRefGoogle Scholar
  125. Thakur VK, Thakur MK (2014b) Recent Advances in Graft Copolymerization and Applications of Chitosan: a Review. ACS Sustain Chem Eng 2(12):2637–2652CrossRefGoogle Scholar
  126. Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847PubMedCrossRefPubMedCentralGoogle Scholar
  127. Thakur MK, Thakur VK, Gupta RK, Pappu A (2016) Synthesis and applications of biodegradable soy based graft copolymers: a review. ACS Sustain Chem Eng 4:1–17CrossRefGoogle Scholar
  128. Tian HY, Tang ZH, Zhuang XL, Chen XS, Jing XB (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37:237–280CrossRefGoogle Scholar
  129. Trombino S, Cassano R, Ferrarelli T, Isacchi B, Bilia AR, Picci N (2012) Collagen α-tocopherulate for topical applications: preparation, characterization, and antioxidant activity evaluation. Macromol Res 20:939–943CrossRefGoogle Scholar
  130. Vaghani SS, Patel MM (2011) pH-sensitive hydrogels based on semi-interpenetrating network (semi-IPN) of chitosan and polyvinyl pyrrolidone for clarithromycin release. Drug Dev Ind Pharm 37:1160–1169PubMedCrossRefPubMedCentralGoogle Scholar
  131. Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408PubMedCrossRefPubMedCentralGoogle Scholar
  132. Vermonden T, Censi R, Hennink WE (2012) Hydrogels for protein delivery. Chem Rev 112:2853–2888PubMedCrossRefGoogle Scholar
  133. Walker MR, Patel KK, Stappenbeck TS (2009) The stem cell niche. J Pathol 217:169–180PubMedCrossRefPubMedCentralGoogle Scholar
  134. Wang H, Zhou J, Liu Z, Wang C (2010) Injectable cardiac tissue engineering for the treatment of myocardial infarction. J Cell Mol Med 14:1044–1055PubMedPubMedCentralGoogle Scholar
  135. Wang JC, Wang XB, Xu CH, Zhang M, Shang XP (2011) Preparation of graphene/poly(vinyl alcohol) nanocomposites with enhanced mechanical properties and water resistance. Polym Int 60:816–822CrossRefGoogle Scholar
  136. Wang H, Liu Z, Li D, Guo X, Kasper FK, Duan C, Zhou J, Mikos AG, Wang C (2012) Injectable biodegradable hydrogels for embryonic stem cell transplantation: improved cardiac remodelling and function of myocardial infarction. J Cell Mol Med 16:1310–1320PubMedPubMedCentralCrossRefGoogle Scholar
  137. Wang M, Fu J, Huang D, Zhang C, Xu Q (2013) Silver nanoparticles-decorated polyphosphazene nanotubes: synthesis and applications. Nanoscale 5:7913–7919PubMedCrossRefPubMedCentralGoogle Scholar
  138. Weber C, Hoogenboom R, Schubert US (2012) Temperature responsive bio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline)s. Prog Polym Sci 37:686–714CrossRefGoogle Scholar
  139. Weisel JW, Litvinov RI (2013) Mechanisms of fibrin polymerization and clinical implications. Blood 121:1712–1719PubMedPubMedCentralCrossRefGoogle Scholar
  140. Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118CrossRefGoogle Scholar
  141. Wu J, Ren Y, Sun J, Feng L (2013) Carbon nanotube-coated macroporous poly(N-isopropylacrylamide) hydrogel and its electrosensitivity. ACS Appl Mater Interfaces 5:3519–3523PubMedCrossRefPubMedCentralGoogle Scholar
  142. Xia Y, Zhu K, Lai H, Lang M, Xiao Y, Lian S, Guo C, Wang C (2015) Enhanced infarct myocardium repair mediated by thermosensitive copolymer hydrogel-based stem cell transplantation. Exp Biol Med (Maywood) 240:593–600CrossRefGoogle Scholar
  143. Xu J, Zhao Q, Jin Y, Qiu L (2014) High loading of hydrophilic/hydrophobic doxorubicin into polyphosphazene polymersome for breast cancer therapy. Nanomedicine 10:349–358PubMedCrossRefPubMedCentralGoogle Scholar
  144. Yamada N, Yanai R, Nakamura M, Inui M, Nishida T (2004) Role of the C domain of IGFs in synergistic promotion, with a substance P-derived peptide, of rabbit corneal epithelial wound healing. Invest Ophthalmol Vis Sci 45:1125–1131PubMedCrossRefPubMedCentralGoogle Scholar
  145. Yang JA, Park K, Jung H, Kim H, Hong SW, Yoon SK, Hahn SK (2011) Target specific hyaluronic acid-interferon alpha conjugate for the treatment of hepatitis C virus infection. Biomaterials 32:8722–8729PubMedCrossRefPubMedCentralGoogle Scholar
  146. Yao X, Liu Y, Gao J, Yang L, Mao D, Stefanitsch C, Li Y, Zhang J, Ou L, Kong D, Zhao Q, Li Z (2015) Nitric oxide releasing hydrogel enhances the therapeutic efficacy of mesenchymal stem cells for myocardial infarction. Biomaterials 60:130–140PubMedCrossRefPubMedCentralGoogle Scholar
  147. Ye Z, Zhou Y, Cai H, Tan W (2011) Myocardial regeneration: roles of stem cells and hydrogels. Adv Drug Delivery Rev 63:688–697CrossRefGoogle Scholar
  148. Yi SY, Hao YB, Nan KJ, Fan TL (2013) Cancer stem cells niche: a target for novel cancer therapeutics. Cancer Treat Rev 39:290–296PubMedCrossRefPubMedCentralGoogle Scholar
  149. Zhang C, Huang S, Tjiu WW, Fan W, Liu T (2012) Facile preparation of water-dispersible graphene sheets stabilized by acid-treated multi-walled carbon nanotubes and their poly(vinyl alcohol) composites. J Mater Chem 22:2427–2434CrossRefGoogle Scholar
  150. Zhao Q, Zhang J, Song L, Ji Q, Yao Y, Cui Y, Shen J, Wang PG, Kong D (2013) Polysaccharide-based biomaterials with on-demand nitric oxide releasing property regulated by enzyme catalysis. Biomaterials 34:8450–8458PubMedCrossRefPubMedCentralGoogle Scholar
  151. Zheng C, Xu J, Yao X, Xu J, Qiu L (2011) Polyphosphazene nanoparticles for cytoplasmic release of doxorubicin with improved cytotoxicity against Dox-resistant tumor cells. J Colloid Interface Sci 355:374–382PubMedCrossRefPubMedCentralGoogle Scholar
  152. Zhou H, Xu HH (2011) The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering. Biomaterials 32:7503–7513PubMedPubMedCentralCrossRefGoogle Scholar
  153. Zhu J, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices 8:607–626PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Shuaiqiang Zhang
    • 1
  • Yan Nie
    • 1
  • Hongyan Tao
    • 1
  • Zongjin Li
    • 1
    • 2
    Email author
  1. 1.Department of PathophysiologyNankai University School of MedicineTianjinChina
  2. 2.The Key Laboratory of Bioactive Materials, Ministry of EducationNankai University, College of Life SciencesTianjinChina

Personalised recommendations