Advertisement

Hydrogels pp 315-337 | Cite as

Injectable Hydrogels for Cartilage Regeneration

  • Cenk Celik
  • Vishal T. Mogal
  • James Hoi Po Hui
  • Xian Jun Loh
  • Wei Seong Toh
Chapter
Part of the Gels Horizons: From Science to Smart Materials book series (GHFSSM)

Abstract

Articular cartilage injuries have a limited potential to heal, which over time, may lead to osteoarthritis, an inflammatory and degenerative joint disease associated with activity-related pain, swelling, and impaired mobility. Regeneration and restoration of joint tissue and function remain unmet challenges. Intra-articular injections of therapeutic agents are effective to some extent, but often require multiple injections. In the past decade, injectable hydrogels have emerged as promising biomaterials, due largely to their biocompatibility, tissue extracellular matrix (ECM) mimicry, excellent permeability, and easy adaptation for minimal-invasive procedures. Moreover, hydrogels can be designed as carriers for sustained release of therapeutic agents and protective matrices for cell delivery. This chapter provides an overview of the injectable hydrogel systems currently being applied together with therapeutic drug delivery and/or cell therapy for treatment of cartilage lesions and osteoarthritis.

Keywords

Hydrogels Stem cells Drug delivery Tissue regeneration 

Notes

Acknowledgements

This work was supported by National University of Singapore, National University Healthcare System, Ministry of Education, and Agency for Science Technology and Research (A*STAR), Singapore.

Disclosure

The author indicates no potential conflict of interest.

References

  1. Amici E, Clark AH, Normand V, Johnson NB (2000) Interpenetrating network formation in gellan–agarose gel composites. Biomacromol 1:721–729CrossRefGoogle Scholar
  2. Anderson SB, Lin CC, Kuntzler DV, Anseth KS (2011) The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels. Biomaterials 32:3564–3574PubMedPubMedCentralCrossRefGoogle Scholar
  3. Baba R, Onodera T, Momma D, Matsuoka M, Hontani K, Elmorsy S, Endo K, Todoh M, Tadano S, Iwasaki N (2015) A novel bone marrow stimulation technique augmented by administration of ultrapurified alginate gel enhances osteochondral repair in a rabbit model. Tissue Eng Part C Methods 21:1263–1273PubMedPubMedCentralCrossRefGoogle Scholar
  4. Basu A, Kunduru KR, Doppalapudi S, Domb AJ, Khan W (2016) Poly(lactic acid) based hydrogels. Adv Drug Deliv Rev 107:192–205PubMedCrossRefPubMedCentralGoogle Scholar
  5. Becerra J, Andrades JA, Guerado E, Zamora-Navas P, Lopez-Puertas JM, Reddi AH (2010) Articular cartilage: structure and regeneration. Tissue Eng Part B Rev 16:617–627PubMedCrossRefPubMedCentralGoogle Scholar
  6. Beck EC, Barragan M, Libeer TB, Kieweg SL, Converse GL, Hopkins RA, Berkland CJ, Detamore MS (2016) Chondroinduction from naturally derived cartilage matrix: a comparison between devitalized and decellularized cartilage encapsulated in hydrogel pastes. Tissue Eng Part A 22:665–679PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T (2006) Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng 93:1152–1163PubMedCrossRefPubMedCentralGoogle Scholar
  8. Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23:41–56CrossRefGoogle Scholar
  9. Burnsed OA, Schwartz Z, Marchand KO, Hyzy SL, Olivares-Navarrete R, Boyan BD (2016) Hydrogels derived from cartilage matrices promote induction of human mesenchymal stem cell chondrogenic differentiation. Acta BiomaterGoogle Scholar
  10. Byers BA, Mauck RL, Chiang IE, Tuan RS (2008) Transient exposure to transforming growth factor beta 3 under serum-free conditions enhances the biomechanical and biochemical maturation of tissue-engineered cartilage. Tissue Eng Part A 14:1821–1834PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chan PPY (2015) Hydrogels with tuneable properties. Methods Mol Biol 1340:121–132PubMedCrossRefGoogle Scholar
  12. Chen F, Yu S, Liu B, Ni Y, Yu C, Su Y, Zhu X, Yu X, Zhou Y, Yan D (2016) An injectable enzymatically crosslinked carboxymethylated pullulan/chondroitin sulfate hydrogel for cartilage tissue engineering. Sci Rep 6:20014PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cheng NC, Estes BT, Young TH, Guilak F (2013a) Genipin-crosslinked cartilage-derived matrix as a scaffold for human adipose-derived stem cell chondrogenesis. Tissue Eng Part A 19:484–496PubMedCrossRefPubMedCentralGoogle Scholar
  14. Cheng YH, Yang SH, Lin FH (2011) Thermosensitive chitosan-gelatin-glycerol phosphate hydrogel as a controlled release system of ferulic acid for nucleus pulposus regeneration. Biomaterials 32:6953–6961PubMedCrossRefPubMedCentralGoogle Scholar
  15. Cheng YH, Yang SH, Liu CC, Gefen A, Lin FH (2013b) Thermosensitive hydrogel made of ferulic acid-gelatin and chitosan glycerophosphate. Carbohydr Polym 92:1512–1519PubMedCrossRefPubMedCentralGoogle Scholar
  16. Cho JH, Kim SH, Park KD, Jung MC, Yang WI, Han SW, Noh JY, Lee JW (2004) Chondrogenic differentiation of human mesenchymal stem cells using a thermosensitive poly(N-isopropylacrylamide) and water-soluble chitosan copolymer. Biomaterials 25:5743–5751PubMedCrossRefPubMedCentralGoogle Scholar
  17. Choi BG, Park MH, Cho SH, Joo MK, Oh HJ, Kim EH, Park K, Han DK, Jeong B (2010) In situ thermal gelling polypeptide for chondrocytes 3D culture. Biomaterials 31:9266–9272PubMedCrossRefPubMedCentralGoogle Scholar
  18. Choi BG, Park MH, Cho S, Joo MK, Oh HJ, Kim EH, Park K, Han DK, Jeong B (2011) Thermal gelling polyalanine-poloxamine-polyalanine aqueous solution for chondrocytes 3D culture: initial concentration effect. Soft Matter 7:456–462CrossRefGoogle Scholar
  19. Choi B, Kim S, Lin B, Wu BM, Lee M (2014) Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering. ACS Appl Mater Interfaces 6:20110–20121PubMedCrossRefPubMedCentralGoogle Scholar
  20. Choi B, Kim S, Fan J, Kowalski T, Petrigliano F, Evseenko D, Lee M (2015) Covalently conjugated transforming growth factor-beta1 in modular chitosan hydrogels for the effective treatment of articular cartilage defects. Biomater Sci 3:742–752Google Scholar
  21. Chung C, Burdick JA (2008) Engineering cartilage tissue. Adv Drug Deliv Rev 60:243–262Google Scholar
  22. Dadsetan M, Szatkowski JP, Yaszemski MJ, Lu L (2007) Characterization of photo-cross-linked oligo[poly(ethylene glycol) fumarate] hydrogels for cartilage tissue engineering. Biomacromol 8:1702–1709CrossRefGoogle Scholar
  23. DeForest CA, Anseth KS (2012) Advances in bioactive hydrogels to probe and direct cell fate. Annu Rev Chem Biomol Eng 3:421–444PubMedCrossRefPubMedCentralGoogle Scholar
  24. Dicker KT, Gurski LA, Pradhan-Bhatt S, Witt RL, Farach-Carson MC, Jia X (2014) Hyaluronan: a simple polysaccharide with diverse biological functions. Acta Biomater 10:1558–1570PubMedCrossRefPubMedCentralGoogle Scholar
  25. Dinescu S, Gălăţeanu B, Albu M, Lungu A, Radu E, Hermenean A (2014) Biocompatibility assessment of novel collagen-sericin scaffolds improved with hyaluronic acid and chondroitin sulfate for cartilage regeneration. Biomed Res Int 2013:1–9CrossRefGoogle Scholar
  26. Elisseeff J, Anseth KS, Sims D, McIntosh W, Randolph M, Yaremchuk M, Langer R (1999) Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. Plast Reconstr Surg 104:1014–1022PubMedCrossRefPubMedCentralGoogle Scholar
  27. Erickson IE, Huang AH, Sengupta S, Kestle S, Burdick JA, Mauck RL (2009) Macromer density influences mesenchymal stem cell chondrogenesis and maturation in photocrosslinked hyaluronic acid hydrogels. Osteoarthr Cartil 17:1639–1648PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fu X, Toh WS, Liu H, Lu K, Li M, Cao T (2011) Establishment of clinically compliant human embryonic stem cells in an autologous feeder-free system. Tissue Eng Part C Methods 17:927–937PubMedCrossRefPubMedCentralGoogle Scholar
  29. Gadjanski I, Yodmuang S, Spiller K, Bhumiratana S, Vunjak-Novakovic G (2013) Supplementation of exogenous adenosine 5′-triphosphate enhances mechanical properties of 3D cell-agarose constructs for cartilage tissue engineering. Tissue Eng Part A 19:2188–2200PubMedPubMedCentralCrossRefGoogle Scholar
  30. Ge Z, Hu Y, Heng BC, Yang Z, Ouyang H, Lee EH, Cao T (2006) Osteoarthritis and therapy. Arthritis Rheum 55:493–500PubMedCrossRefGoogle Scholar
  31. Geng X, Mo X, Fan L, Yin A, Fang J (2012) Hierarchically designed injectable hydrogel from oxidized dextran, amino gelatin and 4-arm poly(ethylene glycol)-acrylate for tissue engineering application. J Mater Chem 22:25130CrossRefGoogle Scholar
  32. Gittens J, Haleem AM, Grenier S, Smyth NA, Hannon CP, Ross KA, Torzilli PA, Kennedy JG (2016) Use of novel chitosan hydrogels for chemical tissue bonding of autologous chondral transplants. J Orthop Res 34:1139–1146PubMedCrossRefGoogle Scholar
  33. Han F, Yang X, Zhao J, Zhao Y, Yuan X (2015) Photocrosslinked layered gelatin-chitosan hydrogel with graded compositions for osteochondral defect repair. J Mater Sci Mater Med 26:160PubMedCrossRefGoogle Scholar
  34. Hayami JW, Waldman SD, Amsden BG (2016) Chondrocyte generation of cartilage-like tissue following photoencapsulation in methacrylated polysaccharide solution blends. Macromol Biosci 16:1083–1095Google Scholar
  35. Ho ST, Cool SM, Hui JH, Hutmacher DW (2010) The influence of fibrin based hydrogels on the chondrogenic differentiation of human bone marrow stromal cells. Biomaterials 31:38–47PubMedCrossRefGoogle Scholar
  36. Hoemann CD, Sun J, McKee MD, Chevrier A, Rossomacha E, Rivard GE, Hurtig M, Buschmann MD (2007) Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects. Osteoarthr Cartil 15:78–89PubMedCrossRefGoogle Scholar
  37. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12PubMedCrossRefPubMedCentralGoogle Scholar
  38. Holland TA, Tabata Y, Mikos AG (2005) Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J Control Release 101:111–125PubMedCrossRefPubMedCentralGoogle Scholar
  39. Huang AH, Stein A, Tuan RS, Mauck RL (2009) Transient exposure to transforming growth factor beta 3 improves the mechanical properties of mesenchymal stem cell-laden cartilage constructs in a density-dependent manner. Tissue Eng Part A 15:3461–3472PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hui JH, Ren XF, Afizah MH, Chian KS, Mikos AG (2013) Oligo[poly(ethylene glycol)fumarate] hydrogel enhances osteochondral repair in porcine femoral condyle defects. Clin Orthop Relat Res 471:1174–1185PubMedCrossRefGoogle Scholar
  41. Jalani G, Rosenzweig DH, Makhoul G, Abdalla S, Cecere R, Vetrone F, Haglund L, Cerruti M (2015) Tough, in-situ thermogelling, injectable hydrogels for biomedical applications. Macromol Biosci 15:473–480PubMedCrossRefGoogle Scholar
  42. Jeng L, Olsen BR, Spector M (2012) Engineering endostatin-expressing cartilaginous constructs using injectable biopolymer hydrogels. Acta Biomater 8:2203–2212PubMedCrossRefGoogle Scholar
  43. Jiang YZ, Zhang SF, Qi YY, Wang LL, Ouyang HW (2011) Cell transplantation for articular cartilage defects: principles of past, present, and future practice. Cell Transplant 20:593–607PubMedCrossRefGoogle Scholar
  44. Jin R, Teixeira LS, Dijkstra PJ, van Blitterswijk CA, Karperien M, Feijen J (2010) Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran-hyaluronic acid conjugates for cartilage tissue engineering. Biomaterials 31:3103–3113PubMedCrossRefGoogle Scholar
  45. Jo S, Shin H, Shung AK, Fisher JP, Mikos AG (2001) Synthesis and characterization of oligo(poly(ethylene glycol) fumarate) macromer. Macromolecules 34:2839–2844CrossRefGoogle Scholar
  46. Karim A, Hall AC (2017) Chondrocyte morphology in stiff and soft agarose gels and the influence of foetal calf serum. J Cell Physiol 232:1041–1052Google Scholar
  47. Kaupp JA, Weber JF, Waldman SD (2012) Mechanical stimulation of chondrocyte-agarose hydrogels. J Vis Exp e4229Google Scholar
  48. Kim DH, Heo SJ, Shin JW, Mun CW, Park KM, Park KD, Jee KS (2010) Preparation of thermosensitive gelatin-pluronic copolymer for cartilage tissue engineering. Macromol Res 18:387–391CrossRefGoogle Scholar
  49. Kim IL, Mauck RL, Burdick JA (2011) Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials 32:8771–8782PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kim J, Lin B, Kim S, Choi B, Evseenko D, Lee M (2015) TGF-beta1 conjugated chitosan collagen hydrogels induce chondrogenic differentiation of human synovium-derived stem cells. J Biol Eng 9:1PubMedPubMedCentralCrossRefGoogle Scholar
  51. Ko JY, Kim KI, Park S, Im GI (2014) In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells. Biomaterials 35:3571–3581PubMedCrossRefGoogle Scholar
  52. Kontturi LS, Järvinen E, Muhonen V, Collin EC, Pandit AS, Kiviranta I, Yliperttula M, Urtti A (2014) An injectable, in situ forming type II collagen/hyaluronic acid hydrogel vehicle for chondrocyte delivery in cartilage tissue engineering. Drug Deliv Transl Res 4:149–158PubMedCrossRefGoogle Scholar
  53. Kurisawa M, Chung J, Yang Y, Gao S, Uyama H (2005) Injectable biodegradable hydrogels composed of hyaluronic acid–tyramine conjugates for drug delivery and tissue engineering. Chem Commun 2005:4312–4314CrossRefGoogle Scholar
  54. Kuršvietienė L, Stanevičienė I, Mongirdienė A, Bernatonienė J (2016) Multiplicity of effects and health benefits of resveratrol. Medicina 52:148–155PubMedCrossRefGoogle Scholar
  55. Kwon JS, Yoon SM, Kwon DY, Kim DY, Tai GZ, Jin LM, Song B, Lee B, Kim JH, Han DK, Min BH, Kim MS (2013) Injectable in situ-forming hydrogel for cartilage tissue engineering. J Mater Chem B 1:3314–3321CrossRefGoogle Scholar
  56. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926PubMedCrossRefGoogle Scholar
  57. Lee F, Chung JE, Kurisawa M (2009) An injectable hyaluronic acid–tyramine hydrogel system for protein delivery. J Controlled Release 134:186–193CrossRefGoogle Scholar
  58. Lee HJ, Yu C, Chansakul T, Hwang NS, Varghese S, Yu SM, Elisseeff JH (2008) Enhanced chondrogenesis of mesenchymal stem cells in collagen mimetic peptide-mediated microenvironment. Tissue Eng Part A 14:1843–1851PubMedCrossRefGoogle Scholar
  59. Levett PA, Melchels FP, Schrobback K, Hutmacher DW, Malda J, Klein TJ (2014a) A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta Biomater 10:214–223PubMedCrossRefGoogle Scholar
  60. Levett PA, Hutmacher DW, Malda J, Klein TJ (2014b) Hyaluronic acid enhances the mechanical properties of tissue-engineered cartilage constructs. PLoS ONE 9:e113216PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lim CT, Ren X, Afizah MH, Tarigan-Panjaitan S, Yang Z, Wu Y, Chian KS, Mikos AG, Hui JH (2013a) Repair of osteochondral defects with rehydrated freeze-dried oligo[poly(ethylene glycol) fumarate] hydrogels seeded with bone marrow mesenchymal stem cells in a porcine model. Tissue Eng Part A 19:1852–1861PubMedCrossRefGoogle Scholar
  62. Lim TC, Toh WS, Wang LS, Kurisawa M, Spector M (2012) The effect of injectable gelatin-hydroxyphenylpropionic acid hydrogel matrices on the proliferation, migration, differentiation and oxidative stress resistance of adult neural stem cells. Biomaterials 33:3446–3455PubMedCrossRefGoogle Scholar
  63. Lim TC, Rokkappanavar S, Toh WS, Wang LS, Kurisawa M, Spector M (2013b) Chemotactic recruitment of adult neural progenitor cells into multifunctional hydrogels providing sustained SDF-1α release and compatible structural support. FASEB J 27:1023–1033PubMedCrossRefGoogle Scholar
  64. Lima EG, Tan AR, Tai T, Marra KG, DeFail A, Ateshian GA, Hung CT (2009) Genipin enhances the mechanical properties of tissue engineered cartilage and protects against inflammatory degradation when used as a medium supplement. J Biomed Mater Res A 91:692–700PubMedPubMedCentralCrossRefGoogle Scholar
  65. Little CJ, Kulyk WM, Chen X (2014) The Effect of Chondroitin Sulphate and Hyaluronic Acid on Chondrocytes Cultured within a Fibrin-Alginate Hydrogel. J Funct Biomater 5:197–210PubMedPubMedCentralCrossRefGoogle Scholar
  66. Liu SQ, Tian Q, Hedrick JL, Hui JH, Ee PL, Yang YY (2010a) Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage. Biomaterials 31:7298–7307PubMedCrossRefGoogle Scholar
  67. Liu SQ, Tian Q, Wang L, Hedrick JL, Hui JH, Yang YY, Ee PL (2010b) Injectable biodegradable poly(ethylene glycol)/RGD peptide hybrid hydrogels for in vitro chondrogenesis of human mesenchymal stem cells. Macromol Rapid Commun 31:1148–1154PubMedCrossRefGoogle Scholar
  68. Liu Y, Shu XZ, Prestwich GD (2006) Osteochondral defect repair with autologous bone marrow-derived mesenchymal stem cells in an injectable, in situ, cross-linked synthetic extracellular matrix. Tissue Eng 12:3405–3416PubMedCrossRefGoogle Scholar
  69. Lutolf MP, Raeber GP, Zisch AH, Tirelli N, Hubbell JA (2003) Cell-responsive synthetic hydrogels. Adv Mater 15:888–892CrossRefGoogle Scholar
  70. Marcacci M, Filardo G, Kon E (2013) Treatment of cartilage lesions: what works and why? Injury 44(Suppl 1):S11–S15PubMedCrossRefGoogle Scholar
  71. Martins EA, Michelacci YM, Baccarin RY, Cogliati B, Silva LC (2014) Evaluation of chitosan-GP hydrogel biocompatibility in osteochondral defects: an experimental approach. BMC Vet Res 10:197PubMedPubMedCentralCrossRefGoogle Scholar
  72. Matsumoto M, Udomsinprasert W, Laengee P, Honsawek S, Patarakul K, Chirachanchai S (2016) A water-based chitosan-maleimide precursor for bioconjugation: an example of a rapid pathway for an in situ injectable adhesive gel. Macromol Rapid Commun 37:1618–1622PubMedCrossRefGoogle Scholar
  73. Mazaki T, Shiozaki Y, Yamane K, Yoshida A, Nakamura M, Yoshida Y, Zhou D, Kitajima T, Tanaka M, Ito Y, Ozaki T, Matsukawa A (2014) A novel, visible light-induced, rapidly cross-linkable gelatin scaffold for osteochondral tissue engineering. Sci Rep 4:4457PubMedPubMedCentralCrossRefGoogle Scholar
  74. Mercuri JJ, Patnaik S, Dion G, Gill SS, Liao J, Simionescu DT (2013) Regenerative potential of decellularized porcine nucleus pulposus hydrogel scaffolds: stem cell differentiation, matrix remodeling, and biocompatibility studies. Tissue Eng Part A 19:952–966PubMedCrossRefGoogle Scholar
  75. Miljkovic ND, Lin YC, Cherubino M, Minteer D, Marra KG (2009) A novel injectable hydrogel in combination with a surgical sealant in a rat knee osteochondral defect model. Knee Surg Sports Traumatol Arthrosc 17:1326–1331PubMedCrossRefGoogle Scholar
  76. Mirahmadi F, Tafazzoli-Shadpour M, Shokrgozar MA, Bonakdar S (2013) Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering. Mater Sci Eng C-Mater Biol Appl 33:4786–4794PubMedCrossRefGoogle Scholar
  77. Mu C, Zhang K, Lin W, Li D (2013) Ring-opening polymerization of genipin and its long-range crosslinking effect on collagen hydrogel. J Biomed Mater Res Part A 101A:385–393CrossRefGoogle Scholar
  78. Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C et al (2012) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2197–2223PubMedCrossRefGoogle Scholar
  79. Nettles DL, Vail TP, Morgan MT, Grinstaff MW, Setton LA (2004) Photocrosslinkable hyaluronan as a scaffold for articular cartilage repair. Ann Biomed Eng 32:391–397PubMedCrossRefGoogle Scholar
  80. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544PubMedPubMedCentralCrossRefGoogle Scholar
  81. Nie L, Zhang G, Hou R, Xu H, Li Y, Fu J (2015) Controllable promotion of chondrocyte adhesion and growth on PVA hydrogels by controlled release of TGF-beta1 from porous PLGA microspheres. Colloids Surf B Biointerfaces 125:51–57PubMedCrossRefGoogle Scholar
  82. Park H, Lee KY (2014) Cartilage regeneration using biodegradable oxidized alginate/hyaluronate hydrogels. J Biomed Mater Res A 102:4519–4525PubMedCrossRefGoogle Scholar
  83. Park KM, Joung YK, Park KD, Lee SY, Lee MC (2008) RGD-conjugated chitosan-Pluronic hydrogels as a cell supported scaffold for articular cartilage regeneration. Macromol Res 16:517–523CrossRefGoogle Scholar
  84. Park H, Temenoff JS, Tabata Y, Caplan AI, Raphael RM, Jansen JA, Mikos AG (2009a) Effect of dual growth factor delivery on chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in injectable hydrogel composites. J Biomed Mater Res A 88:889–897PubMedCrossRefGoogle Scholar
  85. Park KM, Lee SY, Joung YK, Na JS, Lee MC, Park KD (2009b) Thermosensitive chitosan-Pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration. Acta Biomater 5:1956–1965PubMedCrossRefGoogle Scholar
  86. Park MH, Choi BG, Jeong B (2012) Complexation-induced biomimetic long range fibrous orientation in a rigid-flexible block copolymer thermogel. Adv Func Mater 22:5118–5125CrossRefGoogle Scholar
  87. Park MH, Yu Y, Moon HJ, Ko DY, Kim HS, Lee H, Ryu KH, Jeong B (2014) 3D culture of tonsil-derived mesenchymal stem cells in poly(ethylene glycol)-Poly(l-alanine-co-l-phenyl alanine) Thermogel. Adv Healthcare Mater 3:1782–1791CrossRefGoogle Scholar
  88. Park Y, Lutolf MP, Hubbell JA, Hunziker EB, Wong M (2004) Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair. Tissue Eng 10:515–522PubMedCrossRefPubMedCentralGoogle Scholar
  89. Percope de Andrade MA, Campos TV, Abreu-E-Silva GM (2015) Supplementary methods in the nonsurgical treatment of osteoarthritis. Arthroscopy 31:785–792PubMedCrossRefPubMedCentralGoogle Scholar
  90. Ren CD, Gao S, Kurisawa M, Ying JY (2015) Cartilage synthesis in hyaluronic acid-tyramine constructs. J Mater Chem B 3:1942–1956CrossRefGoogle Scholar
  91. Rennerfeldt DA, Renth AN, Talata Z, Gehrke SH, Detamore MS (2013) Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering. Biomaterials 34:8241–8257PubMedPubMedCentralCrossRefGoogle Scholar
  92. Schmitt JF, See KH, Yang Z, Hui JH, Lee EH (2012) Sequential differentiation of mesenchymal stem cells in an agarose scaffold promotes a physis-like zonal alignment of chondrocytes. J Orthop Res 30:1753–1759PubMedCrossRefPubMedCentralGoogle Scholar
  93. Schuurman W, Levett PA, Pot MW, van Weeren PR, Dhert WJA, Hutmacher DW, Melchels FP, Klein TJ, Malda J (2013) Gelatin-methacrylamide hydrogels as potential bio-materials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci 13:551–561PubMedCrossRefPubMedCentralGoogle Scholar
  94. Sharma B, Williams CG, Khan M, Manson P, Elisseeff JH (2007) In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel. Plast Reconstr Surg 119:112–120PubMedCrossRefPubMedCentralGoogle Scholar
  95. Sheu SY, Chen WS, Sun JS, Lin FH, Wu T (2013) Biological characterization of oxidized hyaluronic acid/resveratrol hydrogel for cartilage tissue engineering. J Biomed Mater Res A 101:3457–3466PubMedCrossRefPubMedCentralGoogle Scholar
  96. Sridhar BV, Doyle NR, Randolph MA, Anseth KS (2014) Covalently tethered TGF-beta1 with encapsulated chondrocytes in a PEG hydrogel system enhances extracellular matrix production. J Biomed Mater Res A 102:4464–4472PubMedPubMedCentralGoogle Scholar
  97. Stocco E, Barbon S, Dalzoppo D, Lora S, Macchi V, Paolo Parnigotto P, Grandi C (2014) In vitro assessment of a novel composite scaffold for articular cartilage restoration. Italian J Anat Embryol 119:188Google Scholar
  98. Toh WS, Loh XJ (2014) Advances in hydrogel delivery systems for tissue regeneration. Mater Sci Eng C 45:690–697CrossRefGoogle Scholar
  99. Toh WS, Lee EH, Guo XM, Chan JK, Yeow CH, Choo AB, Cao T (2010) Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials 31:6968–6980PubMedCrossRefPubMedCentralGoogle Scholar
  100. Toh WS, Spector M, Lee EH, Cao T (2011) Biomaterial-mediated delivery of microenvironmental cues for repair and regeneration of articular cartilage. Mol Pharm 8:994–1001PubMedCrossRefPubMedCentralGoogle Scholar
  101. Toh WS, Lim TC, Kurisawa M, Spector M (2012) Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials 33:3835–3845PubMedCrossRefPubMedCentralGoogle Scholar
  102. Toh WS, Foldager CB, Pei M, Hui JH (2014) Advances in mesenchymal stem cell-based strategies for cartilage repair and regeneration. Stem Cell Rev 10:686–696PubMedCrossRefPubMedCentralGoogle Scholar
  103. Toh WS, Toh YC, Loh XJ (2015) Hydrogels for stem cell fate control and delivery in regenerative medicine. In: Loh JX (ed) In-situ gelling polymers. Springer, Singapore, pp. 187–214.  https://doi.org/10.1007/978-981-287-152-7_8
  104. Toh WS, Cao T (2014) Derivation of chondrogenic cells from human embryonic stem cells for cartilage tissue engineering. Methods Mol Biol 1307:263–279Google Scholar
  105. Toh WS, Foldager CB, Hui JH, Olsen BR, Spector M (2016a) Exploiting stem cell-extracellular matrix interactions for cartilage regeneration: a focus on basement membrane molecules. Curr Stem Cell Res Ther 11:618–625PubMedCrossRefPubMedCentralGoogle Scholar
  106. Toh WS, Brittberg M, Farr J, Foldager CB, Gomoll AH, Hui JH, Richardson JB, Roberts S, Spector M (2016b) Cellular senescence in aging and osteoarthritis. Acta Orthop 87:6–14.  https://doi.org/10.1080/17453674.2016.1235087
  107. Tunesi M, Prina E, Munarin F, Rodilossi S, Albani D, Petrini P, Giordano C (2015) Cross-linked poly(acrylic acids) microgels and agarose as semi-interpenetrating networks for resveratrol release. J Mater Sci Mater Med 26:5328PubMedCrossRefPubMedCentralGoogle Scholar
  108. Visser J, Levett PA, te Moller NC, Besems J, Boere KW, van Rijen MH, de Grauw JC, Dhert WJ, van Weeren PR, Malda J (2015) Crosslinkable hydrogels derived from cartilage, meniscus, and tendon tissue. Tissue Eng Part A 21:1195–1206PubMedPubMedCentralCrossRefGoogle Scholar
  109. Wan W, Li Q, Gao H, Ge L, Liu Y, Zhong W, Ouyang J, Xing M (2015) BMSCs laden injectable amino-diethoxypropane modified alginate-chitosan hydrogel for hyaline cartilage reconstruction. J Mater Chem B 3:1990–2005CrossRefGoogle Scholar
  110. Wang L, Stegemann JP (2011) Glyoxal crosslinking of cell-seeded chitosan/collagen hydrogels for bone regeneration. Acta Biomater 7:2410–2417PubMedPubMedCentralCrossRefGoogle Scholar
  111. Wang LS, Du C, Toh WS, Wan ACA, Gao SJ, Kurisawa M (2014) Modulation of chondrocyte functions and stiffness-dependent cartilage repair using an injectable enzymatically crosslinked hydrogel with tunable mechanical properties. Biomaterials 35:2207–2217PubMedCrossRefGoogle Scholar
  112. Wang PY, Tsai WB (2013) Modulation of the proliferation and matrix synthesis of chondrocytes by dynamic compression on genipin-crosslinked chitosan/collagen scaffolds. J Biomater Sci Polym Ed 24:507–519PubMedCrossRefGoogle Scholar
  113. Wright LD, McKeon-Fischer KD, Cui Z, Nair LS, Freeman JW (2014) PDLA/PLLA and PDLA/PCL nanofibers with a chitosan-based hydrogel in composite scaffolds for tissue engineered cartilage. Tissue Eng Regen Med 8:946–954CrossRefGoogle Scholar
  114. Wu J, Ding Q, Dutta A, Wang Y, Huang YH, Weng H, Tang L, Hong Y (2015) An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration. Acta Biomater 16:49–59PubMedCrossRefGoogle Scholar
  115. Wu ZM, Zhang XG, Zheng C, Li CX, Zhang SM, Dong RN, Yu DM (2009) Disulfide-crosslinked chitosan hydrogel for cell viability and controlled protein release. Eur J Pharm Sci 37:198–206PubMedCrossRefGoogle Scholar
  116. Yan S, Zhang X, Zhang K, Di H, Feng L, Li G, Fang J, Cui L, Chen X, Yin J (2016) Injectable in situ forming poly(L-glutamic acid) hydrogels for cartilage tissue engineering. J Mater Chem B 4:947–961CrossRefGoogle Scholar
  117. Yao Y, Zeng L, Huang Y (2016) The enhancement of chondrogenesis of ATDC5 cells in RGD-immobilized microcavitary alginate hydrogels. J Biomater Appl 31:92–101PubMedCrossRefGoogle Scholar
  118. Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A (2015) Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73:254–271PubMedPubMedCentralCrossRefGoogle Scholar
  119. Zhang J, Mujeeb A, Du Y, Lin J, Ge Z (2015) Probing cell-matrix interactions in RGD-decorated macroporous poly (ethylene glycol) hydrogels for 3D chondrocyte culture. Biomed Mater 10:035016PubMedCrossRefGoogle Scholar
  120. Zhang L, Yuan T, Guo L, Zhang X (2012) An in vitro study of collagen hydrogel to induce the chondrogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A 100:2717–2725PubMedCrossRefGoogle Scholar
  121. Zhang S, Lu Q, Cao T, Toh WS (2016) Adipose tissue and extracellular matrix development by injectable decellularized adipose matrix loaded with basic fibroblast growth factor. Plast Reconstr Surg 137:1171–1180PubMedCrossRefPubMedCentralGoogle Scholar
  122. Zhang Z, Lai Y, Yu L, Ding J (2010) Effects of immobilizing sites of RGD peptides in amphiphilic block copolymers on efficacy of cell adhesion. Biomaterials 31:7873–7882PubMedCrossRefGoogle Scholar
  123. Zhao W, Jin X, Cong Y, Liu Y, Fu J (2013) Degradable natural polymer hydrogels for articular cartilage tissue engineering. J Chem Technol Biotechnol 88:327–339CrossRefGoogle Scholar
  124. Zheng L, Jiang X, Chen X, Fan H, Zhang X (2014) Evaluation of novel in situ synthesized nano-hydroxyapatite/collagen/alginate hydrogels for osteochondral tissue engineering. Biomed Mater 9:065004PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Cenk Celik
    • 1
  • Vishal T. Mogal
    • 2
  • James Hoi Po Hui
    • 3
    • 4
  • Xian Jun Loh
    • 5
    • 6
    • 7
  • Wei Seong Toh
    • 2
    • 4
  1. 1.Department of Orthopaedic Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
  2. 2.Faculty of DentistryNational University of SingaporeSingaporeSingapore
  3. 3.Cartilage Repair Program, Therapeutic Tissue Engineering LaboratoryNational University Health SystemSingaporeSingapore
  4. 4.Tissue Engineering Program, Life Sciences InstituteNational University of SingaporeSingaporeSingapore
  5. 5.Institute of Materials Research and Engineering (IMRE)SingaporeSingapore
  6. 6.Department of Materials Science and EngineeringNational University of SingaporeSingaporeSingapore
  7. 7.Singapore Eye Research InstituteSingaporeSingapore

Personalised recommendations