Advertisement

High Resolution Distance Distributions Determined by X-Ray and Neutron Scattering

  • Henry Y. H. Tang
  • John A. Tainer
  • Greg L. Hura
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1009)

Abstract

Measuring distances within or between macromolecules is necessary to understand the chemistry that biological systems uniquely enable. In performing their chemistry, biological macromolecules undergo structural changes over distances ranging from atomic to micrometer scales. X-ray and neutron scattering provide three key assets for tackling this challenge. First, they may be conducted on solutions where the macromolecules are free to sample the conformations that enable their chemistry. Second, there are few limitations on chemical environment for experiments. Third, the techniques can inform upon a wide range of distances at once. Thus scattering, particularly recorded at small angles (SAS), has been applied to a large variety of phenomenon. A challenge in interpreting scattering data is that the desired three dimensional distance information is averaged onto one dimension. Furthermore, the scales and variety of phenomenon interrogated have led to an assortment of functions that describe distances and changes thereof. Here we review scattering studies that characterize biological phenomenon at distances ranging from atomic to 50 nm. We also distinguish the distance distribution functions that are commonly used to describe results from these systems. With available X-ray and neutron scattering facilities, bringing the action that occurs at the atomic to the micrometer scale is now reasonably accessible. Notably, the combined distance and dynamic information recorded by SAS is frequently key to connecting structure to biological activity and to improve macromolecular design strategies and outcomes. We anticipate widespread utilization particularly in macromolecular engineering and time-resolved studies where many contrasting experiments are necessary for resolving chemical mechanisms through structural changes.

Keywords

SAXS Pair distribution Pair correlation Protein structure Resolution Molecular ruler 

References

  1. Amann-Winkel K, Bellissent-Funel MC, Bove LE, Loerting T, Nilsson A, Paciaroni A, Schlesinger D, Skinner L (2016) X-ray and neutron scattering of water. Chem Rev 116:7570–7589CrossRefPubMedGoogle Scholar
  2. Andresen K, Jimenez-Useche I, Howell SC, Yuan CL, Qiu XY (2013) Solution scattering and FRET studies on nucleosomes reveal DNA unwrapping effects of H3 and H4 tail removal. PLoS One 8:e78587CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baldock C, Oberhauser AF, Ma L, Lammie D, Siegler V, Mithieux SM, Tu Y, Chow JY, Suleman F, Malfois M, Rogers S, Guo L, Irving TC, Wess TJ, Weiss AS (2011) Shape of tropoelastin, the highly extensible protein that controls human tissue elasticity. P Natl Acad Sci USA 108:4322–4327CrossRefGoogle Scholar
  4. Bergmann A, Fritz G, Glatter O (2000) Solving the generalized indirect Fourier transformation (GIFT) by Boltzmann simplex simulated annealing (BSSA). J Appl Crystallogr 33:1212–1216CrossRefGoogle Scholar
  5. Brookes DH, Head-Gordon T (2015) Family of oxygen-oxygen radial distribution functions for water. J Phys Chem Lett 6:2938–2943CrossRefPubMedGoogle Scholar
  6. Clark GNI, Hura GL, Teixeira J, Soper AK, Head-Gordon T (2010) Small-angle scattering and the structure of ambient liquid water. Proc Natl Acad Sci U S A 107:14003–14007CrossRefPubMedPubMedCentralGoogle Scholar
  7. Edwards AL, Matsui T, Weiss TM, Khosla C (2014) Architectures of whole-module and bimodular proteins from the 6-deoxyerythronolide B synthase. J Mol Biol 426:2229–2245CrossRefPubMedPubMedCentralGoogle Scholar
  8. Falk SJ, Guo LY, Sekulic N, Smoak EM, Mani T, Logsdon GA, Gupta K, Jansen LE, Van Duyne GD, Vinogradov SA, Lampson MA, Black BE (2015) Chromosomes. CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere. Science 348:699–703CrossRefPubMedPubMedCentralGoogle Scholar
  9. Franke D, Svergun DI (2009) DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J Appl Crystallogr 42:342–346CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gallo P, Arnann-Winkel K, Angell CA, Anisimov MA, Caupin F, Chakravarty C, Lascaris E, Loerting T, Panagiotopoulos AZ, Russo J, Sellberg JA, Stanley HE, Tanaka H, Vega C, Xu LM, Pettersson LGM (2016) Water: a tale of two liquids. Chem Rev 116:7463–7500CrossRefPubMedPubMedCentralGoogle Scholar
  11. Grishaev A, Anthis NJ, Clore GM (2012) Contrast-matched small-angle x-ray scattering from a heavy-atom-labeled protein in structure determination: application to a lead-substituted calmodulin-peptide complex. J Am Chem Soc 134:14686–14689CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hammel M, Amlanjyoti D, Reyes FE, Chen JH, Parpana R, Tang HY, Larabell CA, Tainer JA, Adhya S (2016) HU multimerization shift controls nucleoid compaction. Sci Adv 2:e1600650CrossRefPubMedPubMedCentralGoogle Scholar
  13. Head-Gordon T, Hura G (2002) Water structure from scattering experiments and simulation. Chem Rev 102:2651–2669CrossRefPubMedGoogle Scholar
  14. Horkay F, Hecht AM, Rochas C, Basser PJ, Geissler E (2006) Anomalous small angle x-ray scattering determination of ion distribution around a polyelectrolyte biopolymer in salt solution. J Chem Phys 125Google Scholar
  15. Hura G, Sorenson JM, Glaeser RM, Head-Gordon T (2000) A high-quality x-ray scattering experiment on liquid water at ambient conditions. J Chem Phys 113:9140–9148CrossRefGoogle Scholar
  16. Hura GL, Menon AL, Hammel M, Rambo RP, Poole FL II, Tsutakawa SE, Jenney FE Jr, Classen S, Frankel KA, Hopkins RC, Yang S-J, Scott JW, Dillard BD, Adams MWW, Tainer JA (2009) Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat Methods 6:606–U683CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hura GL, Budworth H, Dyer KN, Rambo RP, Hammel M, McMurray CT, Tainer JA (2013a) Comprehensive macromolecular conformations mapped by quantitative SAXS analyses. Nat Methods 10:453–454CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hura GL, Tsai CL, Claridge SA, Mendillo ML, Smith JM, Williams GJ, Mastroianni AJ, Alivisatos AP, Putnam CD, Kolodner RD, Tainer JA (2013b) DNA conformations in mismatch repair probed in solution by X-ray scattering from gold nanocrystals. Proc Natl Acad Sci U S A 110:17308–17313CrossRefPubMedPubMedCentralGoogle Scholar
  19. Koch MHJ, Vachette P, Svergun DI (2003) Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Q Rev Biophys 36:147–227CrossRefPubMedGoogle Scholar
  20. Lam AJ, St-Pierre F, Gong YY, Marshall JD, Cranfill PJ, Baird MA, McKeown MR, Wiedenmann J, Davidson MW, Schnitzer MJ, Tsien RY, Lin MZ (2012) Improving FRET dynamic range with bright green and red fluorescent proteins. Nature Methods 9:1005. −+CrossRefPubMedPubMedCentralGoogle Scholar
  21. Mathew-Fenn RS, Das R, Silverman JA, Walker PA, Harbury PAB (2008a) A molecular ruler for measuring quantitative distance distributions. PLoS One 3Google Scholar
  22. Mathew-Fenn RS, Das R, Harbury PAB (2008b) Remeasuring the double helix. Science 322:446–449CrossRefPubMedPubMedCentralGoogle Scholar
  23. Miakelye RC, Doniach S, Hodgson KO (1983) Anomalous x-ray-scattering from terbium-labeled parvalbumin in solution. Biophys J 41:287–292CrossRefGoogle Scholar
  24. Morin LRM (1982) Molecular-form factors and photon coherent scattering cross-sections of water. J Phys Chem Ref Data 11:1091–1098CrossRefGoogle Scholar
  25. Nielsen SS, Toft KN, Snakenborg D, Jeppesen MG, Jacobsen JK, Vestergaard B, Kutter JP, Arleth L (2009) BioXTAS RAW, a software program for high-throughput automated small-angle X-ray scattering data reduction and preliminary analysis. J Appl Crystallogr 42:959–964CrossRefGoogle Scholar
  26. Poitevin F, Orland H, Doniach S, Koehl P, Delarue M (2011) AquaSAXS: a web server for computation and fitting of SAXS profiles with non-uniformally hydrated atomic models. Nucleic Acids Res 39:W184–W189CrossRefPubMedPubMedCentralGoogle Scholar
  27. Putnam CD, Hammel M, Hura GL, Tainer JA (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 40:191–285CrossRefPubMedGoogle Scholar
  28. Schiemann O, Prisner TF (2007) Long-range distance determinations in biomacromolecules by EPR spectroscopy. Q Rev Biophys 40:1–53CrossRefPubMedGoogle Scholar
  29. Schneidman-Duhovny D, Hammel M, Tainer JA, Sali A (2016) FoXS, FoXSDock and multiFoXS: single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles. Nucleic Acids Res 44:W424–W429CrossRefPubMedPubMedCentralGoogle Scholar
  30. Semenyuk AV, Svergun DI (1991) Gnom – a program package for small-angle scattering data-processing. J Appl Crystallogr 24:537–540CrossRefGoogle Scholar
  31. Stingaciu LR, O’Neill H, Liberton M, Urban VS, Pakrasi HB, Ohl M (2016) Revealing the dynamics of thylakoid membranes in living cyanobacterial cells. Sci Rep 6:19627CrossRefPubMedPubMedCentralGoogle Scholar
  32. Vainshtein BK, Feigin LA, Lvov YM, Gvozdev RI, Marakushev SA, Likhtenshtein GI (1980) Determination of the distance between heavy-atom markers in hemoglobin and histidine-decarboxylase in solution by small-angle x-ray-scattering. FEBS Lett 116:107–110CrossRefPubMedGoogle Scholar
  33. Williams RS, Dodson GE, Limbo O, Yamada Y, Williams JS, Guenther G, Classen S, Glover JNM, Iwasaki H, Russell P, Tainer JA (2009) Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell 139:87–99CrossRefPubMedPubMedCentralGoogle Scholar
  34. Zettl T, Mathew RS, Seifer S, Doniach S, Harbury PAB, Lipfert J (2016) Absolute intramolecular distance measurements with angstrom-resolution using anomalous small-angle x-ray scattering. Nano Lett 16:5353–5357CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Henry Y. H. Tang
    • 1
  • John A. Tainer
    • 1
    • 2
  • Greg L. Hura
    • 1
    • 3
  1. 1.Molecular Biophysics and Integrated BioimagingLawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Department of Molecular and Cellular OncologyThe University of Texas M. D. Anderson Cancer CenterHoustonUSA
  3. 3.Department of Chemistry and BiochemistryUniversity of CaliforniaSanta CruzUSA

Personalised recommendations