Advertisement

Key Factors in Breast Cancer Dissemination and Establishment at the Bone: Past, Present and Future Perspectives

  • Sioned Owen
  • Catherine Zabkiewicz
  • Lin Ye
  • Andrew J. Sanders
  • Chang Gong
  • Wen G. Jiang
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1026)

Abstract

Bone metastases associated with breast cancer remain a clinical challenge due to their associated morbidity, limited therapeutic intervention and lack of prognostic markers. With a continually evolving understanding of bone biology and its dynamic microenvironment, many potential new targets have been proposed. In this chapter, we discuss the roles of well-established bone markers and how their targeting, in addition to tumour-targeted therapies, might help in the prevention and treatment of bone metastases. There are a vast number of bone markers, of which one of the best-known families is the bone morphogenetic proteins (BMPs). This chapter focuses on their role in breast cancer-associated bone metastases, associated signalling pathways and the possibilities for potential therapeutic intervention. In addition, this chapter provides an update on the role receptor activator of nuclear factor-κB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG) play on breast cancer development and their subsequent influence during the homing and establishment of breast cancer-associated bone metastases. Beyond the well-established bone molecules, this chapter also explores the role of other potential factors such as activated leukocyte cell adhesion molecule (ALCAM) and its potential impact on breast cancer cells’ affinity for the bone environment, which implies that ALCAM could be a promising therapeutic target.

Keywords

Breast cancer Bone metastasis BMPs OPG ALCAM 

Notes

Acknowledgements

Authors would like to thank Cancer Research Wales and the Life Sciences Research Network Wales for supporting their work.

References

  1. 1.
    Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8(2):98–101PubMedGoogle Scholar
  2. 2.
    Yardley DA (2016) Pharmacologic management of bone-related complications and bone metastases in postmenopausal women with hormone receptor-positive breast cancer. Breast Cancer (Dove Med Press) 8:73–82. doi: 10.2147/BCTT.S97963 Google Scholar
  3. 3.
    Briasoulis E, Karavasilis V, Kostadima L, Ignatiadis M, Fountzilas G, Pavlidis N (2004) Metastatic breast carcinoma confined to bone: portrait of a clinical entity. Cancer 101(7):1524–1528. doi: 10.1002/cncr.20545 PubMedCrossRefGoogle Scholar
  4. 4.
    Harries M, Taylor A, Holmberg L, Agbaje O, Garmo H, Kabilan S, Purushotham A (2014) Incidence of bone metastases and survival after a diagnosis of bone metastases in breast cancer patients. Cancer Epidemiol 38(4):427–434. doi: 10.1016/j.canep.2014.05.005 PubMedCrossRefGoogle Scholar
  5. 5.
    Fidler IJ (1970) Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst 45(4):773–782PubMedGoogle Scholar
  6. 6.
    Kasimir-Bauer S (2009) Circulating tumor cells as markers for cancer risk assessment and treatment monitoring. Mol Diagn Ther 13(4):209–215. doi: 10.2165/11315870-000000000-00000 PubMedCrossRefGoogle Scholar
  7. 7.
    Talmadge JE, Fidler IJ (2010) AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 70(14):5649–5669. doi: 10.1158/0008-5472.CAN-10-1040 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Weilbaecher KN, Guise TA, McCauley LK (2011) Cancer to bone: a fatal attraction. Nat Rev Cancer 11(6):411–425. doi: 10.1038/nrc3055 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Guise TA (2013) Breast cancer bone metastases: it's all about the neighborhood. Cell 154(5):957–959. doi: 10.1016/j.cell.2013.08.020 PubMedCrossRefGoogle Scholar
  10. 10.
    Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2(8):584–593. doi: 10.1038/nrc867 PubMedCrossRefGoogle Scholar
  11. 11.
    Reddi AH, Roodman D, Freeman C, Mohla S (2003) Mechanisms of tumor metastasis to the bone: challenges and opportunities. J Bone Miner Res 18(2):190–194PubMedCrossRefGoogle Scholar
  12. 12.
    Steger GG, Bartsch R (2011) Denosumab for the treatment of bone metastases in breast cancer: evidence and opinion. Ther Adv Med Oncol 3(5):233–243. doi: 10.1177/1758834011412656 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Roodman GD (2004) Mechanisms of bone metastasis. Discov Med 4(22):144–148PubMedGoogle Scholar
  14. 14.
    Lipton A, Uzzo R, Amato RJ, Ellis GK, Hakimian B, Roodman GD, Smith MR (2009) The science and practice of bone health in oncology: managing bone loss and metastasis in patients with solid tumors. J Natl Compr Canc Netw 7(Suppl 7):S1-29:quiz S30Google Scholar
  15. 15.
    Epker BN, Frost HM (1965) Correlation of bone resorption and formation with the physical behavior of loaded bone. J Dent Res 44:33–41PubMedCrossRefGoogle Scholar
  16. 16.
    Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89(2):309–319PubMedCrossRefGoogle Scholar
  17. 17.
    Tsuda E, Goto M, Mochizuki S, Yano K, Kobayashi F, Morinaga T, Higashio K (1997) Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun 234(1):137–142PubMedCrossRefGoogle Scholar
  18. 18.
    Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390(6656):175–179. doi: 10.1038/36593 PubMedCrossRefGoogle Scholar
  19. 19.
    Dougall WC (2012) Molecular pathways: osteoclast-dependent and osteoclast-independent roles of the RANKL/RANK/OPG pathway in tumorigenesis and metastasis. Clin Cancer Res 18(2):326–335. doi: 10.1158/1078-0432.CCR-10-2507 PubMedCrossRefGoogle Scholar
  20. 20.
    Karsenty G (1999) The genetic transformation of bone biology. Genes Dev 13(23):3037–3051PubMedCrossRefGoogle Scholar
  21. 21.
    Roodman GD (2001) Biology of osteoclast activation in cancer. J Clin Oncol 19(15):3562–3571. doi: 10.1200/JCO.2001.19.15.3562 PubMedCrossRefGoogle Scholar
  22. 22.
    Ross FP (2000) RANKing the importance of measles virus in Paget's disease. J Clin Invest 105(5):555–558. doi: 10.1172/JCI9557 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Beleut M, Rajaram RD, Caikovski M, Ayyanan A, Germano D, Choi Y, Schneider P, Brisken C (2010) Two distinct mechanisms underlie progesterone-induced proliferation in the mammary gland. Proc Natl Acad Sci U S A 107(7):2989–2994. doi: 10.1073/pnas.0915148107 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roudier-Meyer MP, Erwert R, Pinkas J, Branstetter D, Dougall WC (2010) RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature 468(7320):103–107. doi: 10.1038/nature09495 PubMedCrossRefGoogle Scholar
  25. 25.
    Hu H, Wang J, Gupta A, Shidfar A, Branstetter D, Lee O, Ivancic D, Sullivan M, Chatterton RT Jr, Dougall WC, Khan SA (2014) RANKL expression in normal and malignant breast tissue responds to progesterone and is up-regulated during the luteal phase. Breast Cancer Res Treat 146(3):515–523. doi: 10.1007/s10549-014-3049-9 PubMedCrossRefGoogle Scholar
  26. 26.
    Kiesel L, Kohl A (2016) Role of the RANK/RANKL pathway in breast cancer. Maturitas 86:10–16. doi: 10.1016/j.maturitas.2016.01.001 PubMedCrossRefGoogle Scholar
  27. 27.
    Mukherjee A, Soyal SM, Li J, Ying Y, He B, DeMayo FJ, Lydon JP (2010) Targeting RANKL to a specific subset of murine mammary epithelial cells induces ordered branching morphogenesis and alveologenesis in the absence of progesterone receptor expression. FASEB J 24(11):4408–4419. doi: 10.1096/fj.10-157982 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Fata JE, Kong YY, Li J, Sasaki T, Irie-Sasaki J, Moorehead RA, Elliott R, Scully S, Voura EB, Lacey DL, Boyle WJ, Khokha R, Penninger JM (2000) The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 103(1):41–50PubMedCrossRefGoogle Scholar
  29. 29.
    Gonzalez-Suarez E, Branstetter D, Armstrong A, Dinh H, Blumberg H, Dougall WC (2007) RANK overexpression in transgenic mice with mouse mammary tumor virus promoter-controlled RANK increases proliferation and impairs alveolar differentiation in the mammary epithelia and disrupts lumen formation in cultured epithelial acini. Mol Cell Biol 27(4):1442–1454. doi: 10.1128/MCB.01298-06 PubMedCrossRefGoogle Scholar
  30. 30.
    Pellegrini P, Cordero A, Gallego MI, Dougall WC, Munoz P, Pujana MA, Gonzalez-Suarez E (2013) Constitutive activation of RANK disrupts mammary cell fate leading to tumorigenesis. Stem Cells 31(9):1954–1965. doi: 10.1002/stem.1454 PubMedCrossRefGoogle Scholar
  31. 31.
    Blake ML, Tometsko M, Miller R, Jones JC, Dougall WC (2014) RANK expression on breast cancer cells promotes skeletal metastasis. Clin Exp Metastasis 31(2):233–245. doi: 10.1007/s10585-013-9624-3 PubMedCrossRefGoogle Scholar
  32. 32.
    Casimiro S, Mohammad KS, Pires R, Tato-Costa J, Alho I, Teixeira R, Carvalho A, Ribeiro S, Lipton A, Guise TA, Costa L (2013) RANKL/RANK/MMP-1 molecular triad contributes to the metastatic phenotype of breast and prostate cancer cells in vitro. PLoS One 8(5):e63153. doi: 10.1371/journal.pone.0063153 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Owen S, Sanders AJ, Mason MD, Jiang WG (2016) Importance of osteoprotegrin and receptor activator of nuclear factor kappaB in breast cancer response to hepatocyte growth factor and the bone microenvironment in vitro. Int J Oncol 48(3):919–928. doi: 10.3892/ijo.2016.3339 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I, Morony S, Rubin E, Sarao R, Hojilla CV, Komnenovic V, Kong YY, Schreiber M, Dixon SJ, Sims SM, Khokha R, Wada T, Penninger JM (2006) Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440(7084):692–696. doi: 10.1038/nature04524 PubMedCrossRefGoogle Scholar
  35. 35.
    Gonzalez-Suarez E, Sanz-Moreno A (2016) RANK as a therapeutic target in cancer. FEBS J 283(11):2018–2033. doi: 10.1111/febs.13645 PubMedCrossRefGoogle Scholar
  36. 36.
    Van Poznak C, Cross SS, Saggese M, Hudis C, Panageas KS, Norton L, Coleman RE, Holen I (2006) Expression of osteoprotegerin (OPG), TNF related apoptosis inducing ligand (TRAIL), and receptor activator of nuclear factor kappaB ligand (RANKL) in human breast tumours. J Clin Pathol 59(1):56–63. doi: 10.1136/jcp.2005.026534 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Rachner TD, Schoppet M, Niebergall U, Hofbauer LC (2008) 17beta-estradiol inhibits osteoprotegerin production by the estrogen receptor-alpha-positive human breast cancer cell line MCF-7. Biochem Biophys Res Commun 368(3):736–741. doi: 10.1016/j.bbrc.2008.01.118 PubMedCrossRefGoogle Scholar
  38. 38.
    Zinonos I, Labrinidis A, Lee M, Liapis V, Hay S, Ponomarev V, Diamond P, Findlay DM, Zannettino AC, Evdokiou A (2011) Anticancer efficacy of Apo2L/TRAIL is retained in the presence of high and biologically active concentrations of osteoprotegerin in vivo. J Bone Miner Res 26(3):630–643. doi: 10.1002/jbmr.244 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Holen I, Cross SS, Neville-Webbe HL, Cross NA, Balasubramanian SP, Croucher PI, Evans CA, Lippitt JM, Coleman RE, Eaton CL (2005) Osteoprotegerin (OPG) expression by breast cancer cells in vitro and breast tumours in vivo--a role in tumour cell survival? Breast Cancer Res Treat 92(3):207–215. doi: 10.1007/s10549-005-2419-8 PubMedCrossRefGoogle Scholar
  40. 40.
    Rachner TD, Benad P, Rauner M, Goettsch C, Singh SK, Schoppet M, Hofbauer LC (2009) Osteoprotegerin production by breast cancer cells is suppressed by dexamethasone and confers resistance against TRAIL-induced apoptosis. J Cell Biochem 108(1):106–116. doi: 10.1002/jcb.22232 PubMedCrossRefGoogle Scholar
  41. 41.
    Cody JJ, Rivera AA, Lyons GR, Yang SW, Wang M, Sarver DB, Wang D, Selander KS, Kuo HC, Meleth S, Feng X, Siegal GP, Douglas JT (2010) Arming a replicating adenovirus with osteoprotegerin reduces the tumor burden in a murine model of osteolytic bone metastases of breast cancer. Cancer Gene Ther 17(12):893–905. doi: 10.1038/cgt.2010.47 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Fisher JL, Thomas-Mudge RJ, Elliott J, Hards DK, Sims NA, Slavin J, Martin TJ, Gillespie MT (2006) Osteoprotegerin overexpression by breast cancer cells enhances orthotopic and osseous tumor growth and contrasts with that delivered therapeutically. Cancer Res 66(7):3620–3628. doi: 10.1158/0008-5472.CAN-05-3119 PubMedCrossRefGoogle Scholar
  43. 43.
    Fradet A, Sorel H, Bouazza L, Goehrig D, Depalle B, Bellahcene A, Castronovo V, Follet H, Descotes F, Aubin JE, Clezardin P, Bonnelye E (2011) Dual function of ERRalpha in breast cancer and bone metastasis formation: implication of VEGF and osteoprotegerin. Cancer Res 71(17):5728–5738. doi: 10.1158/0008-5472.CAN-11-1431 PubMedCrossRefGoogle Scholar
  44. 44.
    Weichhaus M, Segaran P, Renaud A, Geerts D, Connelly L (2014) Osteoprotegerin expression in triple-negative breast cancer cells promotes metastasis. Cancer Med 3(5):1112–1125. doi: 10.1002/cam4.277 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Zinonos I, Luo KW, Labrinidis A, Liapis V, Hay S, Panagopoulos V, Denichilo M, Ko CH, Yue GG, Lau CB, Ingman W, Ponomarev V, Atkins GJ, Findlay DM, Zannettino AC, Evdokiou A (2014) Pharmacologic inhibition of bone resorption prevents cancer-induced osteolysis but enhances soft tissue metastasis in a mouse model of osteolytic breast cancer. Int J Oncol 45(2):532–540. doi: 10.3892/ijo.2014.2468 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Owen S, Ye L, Sanders AJ, Mason MD, Jiang WG (2013) Expression profile of receptor activator of nuclear-kappaB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG) in breast cancer. Anticancer Res 33(1):199–206PubMedGoogle Scholar
  47. 47.
    Park HS, Lee A, Chae BJ, Bae JS, Song BJ, Jung SS (2014) Expression of receptor activator of nuclear factor kappa-B as a poor prognostic marker in breast cancer. J Surg Oncol 110(7):807–812. doi: 10.1002/jso.23737 PubMedCrossRefGoogle Scholar
  48. 48.
    Sanger N, Ruckhaberle E, Bianchini G, Heinrich T, Milde-Langosch K, Muller V, Rody A, Solomayer EF, Fehm T, Holtrich U, Becker S, Karn T (2014) OPG and PgR show similar cohort specific effects as prognostic factors in ER positive breast cancer. Mol Oncol 8(7):1196–1207. doi: 10.1016/j.molonc.2014.04.003 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Santini D, Schiavon G, Vincenzi B, Gaeta L, Pantano F, Russo A, Ortega C, Porta C, Galluzzo S, Armento G, La Verde N, Caroti C, Treilleux I, Ruggiero A, Perrone G, Addeo R, Clezardin P, Muda AO, Tonini G (2011) Receptor activator of NF-kB (RANK) expression in primary tumors associates with bone metastasis occurrence in breast cancer patients. PLoS One 6(4):e19234. doi: 10.1371/journal.pone.0019234 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Croft M, Benedict CA, Ware CF (2013) Clinical targeting of the TNF and TNFR superfamilies. Nat Rev Drug Discov 12(2):147–168. doi: 10.1038/nrd3930 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Ye L, Lewis-Russell JM, Kyanaston HG, Jiang WG (2007) Bone morphogenetic proteins and their receptor signaling in prostate cancer. Histol Histopathol 22(10):1129–1147PubMedGoogle Scholar
  52. 52.
    Davies SR, Watkins G, Douglas-Jones A, Mansel RE, Jiang WG (2008) Bone morphogenetic proteins 1 to 7 in human breast cancer, expression pattern and clinical/prognostic relevance. J Exp Ther Oncol 7(4):327–338PubMedGoogle Scholar
  53. 53.
    Hanavadi S, Martin TA, Watkins G, Mansel RE, Jiang WG (2007) The role of growth differentiation factor-9 (GDF-9) and its analog, GDF-9b/BMP-15, in human breast cancer. Ann Surg Oncol 14(7):2159–2166. doi: 10.1245/s10434-007-9397-5 PubMedCrossRefGoogle Scholar
  54. 54.
    Li J, Ye L, Parr C, Douglas-Jones A, Kyanaston HG, Mansel RE, Jiang WG (2009) The aberrant expression of bone morphogenetic protein 12 (BMP-12) in human breast cancer and its potential prognostic value. Gene Ther Mol Biol 13:186–193Google Scholar
  55. 55.
    Clement JH, Sanger J, Hoffken K (1999) Expression of bone morphogenetic protein 6 in normal mammary tissue and breast cancer cell lines and its regulation by epidermal growth factor. Int J Cancer 80(2):250–256PubMedCrossRefGoogle Scholar
  56. 56.
    Reinholz MM, Iturria SJ, Ingle JN, Roche PC (2002) Differential gene expression of TGF-beta family members and osteopontin in breast tumor tissue: analysis by real-time quantitative PCR. Breast Cancer Res Treat 74(3):255–269PubMedCrossRefGoogle Scholar
  57. 57.
    Buijs JT, Henriquez NV, van Overveld PG, van der Horst G, Que I, Schwaninger R, Rentsch C, Ten Dijke P, Cleton-Jansen AM, Driouch K, Lidereau R, Bachelier R, Vukicevic S, Clezardin P, Papapoulos SE, Cecchini MG, Lowik CW, van der Pluijm G (2007) Bone morphogenetic protein 7 in the development and treatment of bone metastases from breast cancer. Cancer Res 67(18):8742–8751. doi: 10.1158/0008-5472.CAN-06-2490
  58. 58.
    Bobinac D, Maric I, Zoricic S, Spanjol J, Dordevic G, Mustac E, Fuckar Z (2005) Expression of bone morphogenetic proteins in human metastatic prostate and breast cancer. Croat Med J 46(3):389–396PubMedGoogle Scholar
  59. 59.
    Raida M, Clement JH, Ameri K, Han C, Leek RD, Harris AL (2005) Expression of bone morphogenetic protein 2 in breast cancer cells inhibits hypoxic cell death. Int J Oncol 26(6):1465–1470PubMedGoogle Scholar
  60. 60.
    Alarmo EL, Rauta J, Kauraniemi P, Karhu R, Kuukasjarvi T, Kallioniemi A (2006) Bone morphogenetic protein 7 is widely overexpressed in primary breast cancer. Genes Chromosomes Cancer 45(4):411–419PubMedCrossRefGoogle Scholar
  61. 61.
    Alarmo EL, Kuukasjarvi T, Karhu R, Kallioniemi A (2007) A comprehensive expression survey of bone morphogenetic proteins in breast cancer highlights the importance of BMP4 and BMP7. Breast Cancer Res Treat 103(2):239–246. doi: 10.1007/s10549-006-9362-1 PubMedCrossRefGoogle Scholar
  62. 62.
    Helms MW, Packeisen J, August C, Schittek B, Boecker W, Brandt BH, Buerger H (2005) First evidence supporting a potential role for the BMP/SMAD pathway in the progression of oestrogen receptor-positive breast cancer. J Pathol 206(3):366–376PubMedCrossRefGoogle Scholar
  63. 63.
    Bokobza S, Ye L, Kynaston H, Mansel RE, Jiang WG (2009) Reduced expression of BMPR-IB correlates with poor prognosis and increased proliferation of breast cancer cells. Cancer Genom Proteom 6(2): 101–108Google Scholar
  64. 64.
    Katsuno Y, Hanyu A, Kanda H, Ishikawa Y, Akiyama F, Iwase T, Ogata E, Ehata S, Miyazono K, Imamura T (2008) Bone morphogenetic protein signaling enhances invasion and bone metastasis of breast cancer cells through Smad pathway. Oncogene 27(49):6322–6333. doi: 10.1038/onc.2008.232 PubMedCrossRefGoogle Scholar
  65. 65.
    Zhang M, Wang Q, Yuan W, Yang S, Wang X, Yan JD, Du J, Yin J, Gao SY, Sun BC, Zhu TH (2007) Epigenetic regulation of bone morphogenetic protein-6 gene expression in breast cancer cells. J Steroid Biochem Mol Biol 105(1–5):91–97. doi: 10.1016/j.jsbmb.2007.01.002 PubMedCrossRefGoogle Scholar
  66. 66.
    Takahashi M, Otsuka F, Miyoshi T, Otani H, Goto J, Yamashita M, Ogura T, Makino H, Doihara H (2008) Bone morphogenetic protein 6 (BMP6) and BMP7 inhibit estrogen-induced proliferation of breast cancer cells by suppressing p38 mitogen-activated protein kinase activation. J Endocrinol 199(3):445–455. doi: 10.1677/JOE-08-0226 PubMedCrossRefGoogle Scholar
  67. 67.
    Schwalbe M, Sanger J, Eggers R, Naumann A, Schmidt A, Hoffken K, Clement JH (2003) Differential expression and regulation of bone morphogenetic protein 7 in breast cancer. Int J Oncol 23(1):89–95PubMedGoogle Scholar
  68. 68.
    Alarmo EL, Kallioniemi A (2010) Bone morphogenetic proteins in breast cancer: dual role in tumourigenesis? Endocr Relat Cancer 17(2):R123–R139. doi: 10.1677/ERC-09-0273 PubMedCrossRefGoogle Scholar
  69. 69.
    Julien S, Ivetic A, Grigoriadis A, QiZe D, Burford B, Sproviero D, Picco G, Gillett C, Papp SL, Schaffer L, Tutt A, Taylor-Papadimitriou J, Pinder SE, Burchell JM (2011) Selectin ligand sialyl-Lewis x antigen drives metastasis of hormone-dependent breast cancers. Cancer Res 71(24):7683–7693. doi: 10.1158/0008-5472.CAN-11-1139 PubMedCrossRefGoogle Scholar
  70. 70.
    Yamamoto T, Saatcioglu F, Matsuda T (2002) Cross-talk between bone morphogenic proteins and estrogen receptor signaling. Endocrinology 143(7):2635–2642. doi: 10.1210/endo.143.7.8877 PubMedCrossRefGoogle Scholar
  71. 71.
    Wu L, Wu Y, Gathings B, Wan M, Li X, Grizzle W, Liu Z, Lu C, Mao Z, Cao X (2003) Smad4 as a transcription corepressor for estrogen receptor alpha. J Biol Chem 278(17):15192–15200. doi: 10.1074/jbc.M212332200 PubMedCrossRefGoogle Scholar
  72. 72.
    Ghosh-Choudhury N, Ghosh-Choudhury G, Celeste A, Ghosh PM, Moyer M, Abboud SL, Kreisberg J (2000) Bone morphogenetic protein-2 induces cyclin kinase inhibitor p21 and hypophosphorylation of retinoblastoma protein in estradiol-treated MCF-7 human breast cancer cells. Biochim Biophys Acta 1497(2):186–196PubMedCrossRefGoogle Scholar
  73. 73.
    Ong DB, Colley SM, Norman MR, Kitazawa S, Tobias JH (2004) Transcriptional regulation of a BMP-6 promoter by estrogen receptor alpha. J Bone Miner Res 19(3):447–454. doi: 10.1359/JBMR.0301249 PubMedCrossRefGoogle Scholar
  74. 74.
    Feng J, Li L, Zhang N, Liu J, Zhang L, Gao H, Wang G, Li Y, Zhang Y, Li X, Liu D, Lu J, Huang B (2016) Androgen and AR contribute to breast cancer development and metastasis: an insight of mechanisms. Oncogene. doi: 10.1038/onc.2016.432
  75. 75.
    Cochrane DR, Bernales S, Jacobsen BM, Cittelly DM, Howe EN, D'Amato NC, Spoelstra NS, Edgerton SM, Jean A, Guerrero J, Gomez F, Medicherla S, Alfaro IE, McCullagh E, Jedlicka P, Torkko KC, Thor AD, Elias AD, Protter AA, Richer JK (2014) Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Res 16(1):R7. doi: 10.1186/bcr3599 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Montesano R, Sarkozi R, Schramek H (2008) Bone morphogenetic protein-4 strongly potentiates growth factor-induced proliferation of mammary epithelial cells. Biochem Biophys Res Commun 374(1):164–168. doi: 10.1016/j.bbrc.2008.07.007 PubMedCrossRefGoogle Scholar
  77. 77.
    Laulan NB, St-Pierre Y (2015) Bone morphogenetic protein 4 (BMP-4) and epidermal growth factor (EGF) inhibit metalloproteinase-9 (MMP-9) expression in cancer cells. Oncoscience 2(3):309–316. Doi:10.18632/oncoscience.144
  78. 78.
    Kretzschmar M, Doody J, Massague J (1997) Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. Nature 389(6651):618–622. doi: 10.1038/39348 PubMedCrossRefGoogle Scholar
  79. 79.
    Guo X, Wang XF (2009) Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res 19(1):71–88. doi: 10.1038/cr.2008.302 PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Ghosh Choudhury G, Jin DC, Kim Y, Celeste A, Ghosh-Choudhury N, Abboud HE (1999) Bone morphogenetic protein-2 inhibits MAPK-dependent elk-1 transactivation and DNA synthesis induced by EGF in mesangial cells. Biochem Biophys Res Commun 258(2):490–496PubMedCrossRefGoogle Scholar
  81. 81.
    Ren W, Liu Y, Wan S, Fei C, Wang W, Chen Y, Zhang Z, Wang T, Wang J, Zhou L, Weng Y, He T, Zhang Y (2014) BMP9 inhibits proliferation and metastasis of HER2-positive SK-BR-3 breast cancer cells through ERK1/2 and PI3K/AKT pathways. PLoS One 9(5):e96816. doi: 10.1371/journal.pone.0096816 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Clausen KA, Blish KR, Birse CE, Triplette MA, Kute TE, Russell GB, D'Agostino RB Jr, Miller LD, Torti FM, Torti SV (2011) SOSTDC1 differentially modulates Smad and beta-catenin activation and is down-regulated in breast cancer. Breast Cancer Res Treat 129(3):737–746. doi: 10.1007/s10549-010-1261-9 PubMedCrossRefGoogle Scholar
  83. 83.
    Nacamuli RP, Fong KD, Lenton KA, Song HM, Fang TD, Salim A, Longaker MT (2005) Expression and possible mechanisms of regulation of BMP3 in rat cranial sutures. Plast Reconstr Surg 116(5):1353–1362PubMedCrossRefGoogle Scholar
  84. 84.
    Hallahan AR, Pritchard JI, Chandraratna RA, Ellenbogen RG, Geyer JR, Overland RP, Strand AD, Tapscott SJ, Olson JM (2003) BMP-2 mediates retinoid-induced apoptosis in medulloblastoma cells through a paracrine effect. Nat Med 9(8):1033–1038PubMedCrossRefGoogle Scholar
  85. 85.
    van der Poel HG, Hanrahan C, Zhong H, Simons JW (2003) Rapamycin induces Smad activity in prostate cancer cell lines. Urol Res 30(6):380–386PubMedGoogle Scholar
  86. 86.
    Ye L, Lewis-Russell JM, Sanders AJ, Kynaston H, Jiang WG (2008) HGF/SF up-regulates the expression of bone morphogenetic protein 7 in prostate cancer cells. Urol Oncol 26(2):190–197. doi: 10.1016/j.urolonc.2007.03.027 PubMedCrossRefGoogle Scholar
  87. 87.
    Ye L, Lewis-Russell JM, Davies G, Sanders AJ, Kynaston H, Jiang WG (2007) Hepatocyte growth factor up-regulates the expression of the bone morphogenetic protein (BMP) receptors, BMPR-IB and BMPR-II, in human prostate cancer cells. Int J Oncol 30(2):521–529PubMedGoogle Scholar
  88. 88.
    Ren W, Sun X, Wang K, Feng H, Liu Y, Fei C, Wan S, Wang W, Luo J, Shi Q, Tang M, Zuo G, Weng Y, He T, Zhang Y (2014) BMP9 inhibits the bone metastasis of breast cancer cells by downregulating CCN2 (connective tissue growth factor, CTGF) expression. Mol Biol Rep 41(3):1373–1383. doi: 10.1007/s11033-013-2982-8 PubMedCrossRefGoogle Scholar
  89. 89.
    Wang K, Feng H, Ren W, Sun X, Luo J, Tang M, Zhou L, Weng Y, He TC, Zhang Y (2011) BMP9 inhibits the proliferation and invasiveness of breast cancer cells MDA-MB-231. J Cancer Res Clin Oncol 137(11):1687–1696. doi: 10.1007/s00432-011-1047-4 PubMedCrossRefGoogle Scholar
  90. 90.
    Moreau JE, Anderson K, Mauney JR, Nguyen T, Kaplan DL, Rosenblatt M (2007) Tissue-engineered bone serves as a target for metastasis of human breast cancer in a mouse model. Cancer Res 67 (21):10304–10308. doi: 10.1158/0008-5472.CAN-07-2483
  91. 91.
    Kapoor P, Suva LJ, Welch DR, Donahue HJ (2008) Osteoprotegerin and the bone homing and colonization potential of breast cancer cells. J Cell Biochem 103(1):30–41. doi: 10.1002/jcb.21382 PubMedCrossRefGoogle Scholar
  92. 92.
    Ibrahim T, Leong I, Sanchez-Sweatman O, Khokha R, Sodek J, Tenenbaum HC, Ganss B, Cheifetz S (2000) Expression of bone sialoprotein and osteopontin in breast cancer bone metastases. Clin Exp Metastasis 18(3):253–260PubMedCrossRefGoogle Scholar
  93. 93.
    Tan CC, Li GX, Tan LD, Du X, Li XQ, He R, Wang QS, Feng YM (2016) Breast cancer cells obtain an osteomimetic feature via epithelial-mesenchymal transition that have undergone BMP2/RUNX2 signaling pathway induction. Oncotarget. doi:10.18632/oncotarget.12939
  94. 94.
    Carreira AC, Alves GG, Zambuzzi WF, Sogayar MC, Granjeiro JM (2014) Bone morphogenetic proteins: structure, biological function and therapeutic applications. Arch Biochem Biophys 561:64–73. doi: 10.1016/j.abb.2014.07.011 PubMedCrossRefGoogle Scholar
  95. 95.
    Rucci N, Teti A (2010) Osteomimicry: how tumor cells try to deceive the bone. Front Biosci (Schol Ed) 2:907–915Google Scholar
  96. 96.
    van den Wijngaard A, Mulder WR, Dijkema R, Boersma CJ, Mosselman S, van Zoelen EJ, Olijve W (2000) Antiestrogens specifically up-regulate bone morphogenetic protein-4 promoter activity in human osteoblastic cells. Mol Endocrinol 14(5):623–633PubMedCrossRefGoogle Scholar
  97. 97.
    Matsumoto Y, Otsuka F, Takano-Narazaki M, Katsuyama T, Nakamura E, Tsukamoto N, Inagaki K, Sada KE, Makino H (2013) Estrogen facilitates osteoblast differentiation by upregulating bone morphogenetic protein-4 signaling. Steroids 78(5):513–520. doi: 10.1016/j.steroids.2013.02.011 PubMedCrossRefGoogle Scholar
  98. 98.
    Bunyaratavej P, Hullinger TG, Somerman MJ (2000) Bone morphogenetic proteins secreted by breast cancer cells upregulate bone sialoprotein expression in preosteoblast cells. Exp Cell Res 260(2):324–333. doi: 10.1006/excr.2000.5019 PubMedCrossRefGoogle Scholar
  99. 99.
    Tarragona M, Pavlovic M, Arnal-Estape A, Urosevic J, Morales M, Guiu M, Planet E, Gonzalez-Suarez E, Gomis RR (2012) Identification of NOG as a specific breast cancer bone metastasis-supporting gene. J Biol Chem 287(25):21346–21355. doi: 10.1074/jbc.M112.355834 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Mock K, Preca BT, Brummer T, Brabletz S, Stemmler MP, Brabletz T (2015) The EMT-activator ZEB1 induces bone metastasis associated genes including BMP-inhibitors. OncotargetGoogle Scholar
  101. 101.
    Schwaninger R, Rentsch CA, Wetterwald A, van der Horst G, van Bezooijen RL, van der Pluijm G, Lowik CW, Ackermann K, Pyerin W, Hamdy FC, Thalmann GN, Cecchini MG (2007) Lack of noggin expression by cancer cells is a determinant of the osteoblast response in bone metastases. Am J Pathol 170 (1):160–175. doi: 10.2353/ajpath.2007.051276
  102. 102.
    Ye L, Lewis-Russell JM, Kynaston H, Jiang WG (2007) Endogenous BMP-7 controls the motility of prostate cancer cells through regulation of BMP antagonists. J Urol 178(3) Pt 1: 1086–1091Google Scholar
  103. 103.
    Herbertz S, Sawyer JS, Stauber AJ, Gueorguieva I, Driscoll KE, Estrem ST, Cleverly AL, Desaiah D, Guba SC, Benhadji KA, Slapak CA, Lahn MM (2015) Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des Devel Ther 9:4479–4499. doi: 10.2147/DDDT.S86621 PubMedPubMedCentralGoogle Scholar
  104. 104.
    Hawinkels LJ, de Vinuesa AG, Paauwe M, Kruithof-de Julio M, Wiercinska E, Pardali E, Mezzanotte L, Keereweer S, Braumuller TM, Heijkants RC, Jonkers J, Lowik CW, Goumans MJ, ten Hagen TL, ten Dijke P (2016) Activin receptor-like kinase 1 ligand trap reduces microvascular density and improves chemotherapy efficiency to various solid tumors. Clin Cancer Res 22(1):96–106. doi: 10.1158/1078-0432.CCR-15-0743 PubMedCrossRefGoogle Scholar
  105. 105.
    Cunha SI, Pietras K (2011) ALK1 as an emerging target for antiangiogenic therapy of cancer. Blood 117(26):6999–7006. doi: 10.1182/blood-2011-01-330142 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Chen G, Deng C, Li YP (2012) TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8(2):272–288. doi: 10.7150/ijbs.2929 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Suvannasankha A, Chirgwin JM (2014) Role of bone-anabolic agents in the treatment of breast cancer bone metastases. Breast Cancer Res 16(6):484. doi: 10.1186/s13058-014-0484-9 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Zhang L, Ye Y, Long X, Xiao P, Ren X, Yu J (2016) BMP signaling and its paradoxical effects in tumorigenesis and dissemination. Oncotarget 7(47):78206–78218. doi:10.18632/oncotarget.12151
  109. 109.
    Royce ME, Osman D (2015) Everolimus in the treatment of metastatic breast cancer. Breast Cancer (Auckl) 9:73–79. doi: 10.4137/BCBCR.S29268 Google Scholar
  110. 110.
    Bowen MA, Patel DD, Li X, Modrell B, Malacko AR, Wang WC, Marquardt H, Neubauer M, Pesando JM, Francke U et al (1995) Cloning, mapping, and characterization of activated leukocyte-cell adhesion molecule (ALCAM), a CD6 ligand. J Exp Med 181(6):2213–2220PubMedCrossRefGoogle Scholar
  111. 111.
    Degen WG, van Kempen LC, Gijzen EG, van Groningen JJ, van Kooyk Y, Bloemers HP, Swart GW (1998) MEMD, a new cell adhesion molecule in metastasizing human melanoma cell lines, is identical to ALCAM (activated leukocyte cell adhesion molecule). Am J Pathol 152(3):805–813PubMedPubMedCentralGoogle Scholar
  112. 112.
    Swart GW (2002) Activated leukocyte cell adhesion molecule (CD166/ALCAM): developmental and mechanistic aspects of cell clustering and cell migration. Eur J Cell Biol 81(6):313–321. doi: 10.1078/0171-9335-00256 PubMedCrossRefGoogle Scholar
  113. 113.
    van Kempen LC, Nelissen JM, Degen WG, Torensma R, Weidle UH, Bloemers HP, Figdor CG, Swart GW (2001) Molecular basis for the homophilic activated leukocyte cell adhesion molecule (ALCAM)-ALCAM interaction. J Biol Chem 276(28):25783–25790. doi: 10.1074/jbc.M011272200 PubMedCrossRefGoogle Scholar
  114. 114.
    Micciche F, Da Riva L, Fabbi M, Pilotti S, Mondellini P, Ferrini S, Canevari S, Pierotti MA, Bongarzone I (2011) Activated leukocyte cell adhesion molecule expression and shedding in thyroid tumors. PLoS One 6(2):e17141. doi: 10.1371/journal.pone.0017141 PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Kulasingam V, Zheng Y, Soosaipillai A, Leon AE, Gion M, Diamandis EP (2009) Activated leukocyte cell adhesion molecule: a novel biomarker for breast cancer. Int J Cancer 125(1):9–14. doi: 10.1002/ijc.24292 PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Witzel I, Schroder C, Muller V, Zander H, Tachezy M, Ihnen M, Janicke F, Milde-Langosch K (2012) Detection of activated leukocyte cell adhesion molecule in the serum of breast cancer patients and implications for prognosis. Oncology 82(6):305–312. doi: 10.1159/000337222 PubMedCrossRefGoogle Scholar
  117. 117.
    Al-Shehri FS, Abd El Azeem EM (2015) Activated leukocyte cell adhesion molecule (ALCAM) in Saudi breast cancer patients as prognostic and predictive indicator. Breast Cancer (Auckl) 9:81–86. doi: 10.4137/BCBCR.S25563 Google Scholar
  118. 118.
    Jezierska A, Matysiak W, Motyl T (2006) ALCAM/CD166 protects breast cancer cells against apoptosis and autophagy. Med Sci Monit 12(8):BR263–BR273PubMedGoogle Scholar
  119. 119.
    Hein S, Muller V, Kohler N, Wikman H, Krenkel S, Streichert T, Schweizer M, Riethdorf S, Assmann V, Ihnen M, Beck K, Issa R, Janicke F, Pantel K, Milde-Langosch K (2011) Biologic role of activated leukocyte cell adhesion molecule overexpression in breast cancer cell lines and clinical tumor tissue. Breast Cancer Res Treat 129(2):347–360. doi: 10.1007/s10549-010-1219-y PubMedCrossRefGoogle Scholar
  120. 120.
    Wiiger MT, Gehrken HB, Fodstad O, Maelandsmo GM, Andersson Y (2010) A novel human recombinant single-chain antibody targeting CD166/ALCAM inhibits cancer cell invasion in vitro and in vivo tumour growth. Cancer Immunol Immunother 59(11):1665–1674. doi: 10.1007/s00262-010-0892-3 PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    King JA, Tan F, Mbeunkui F, Chambers Z, Cantrell S, Chen H, Alvarez D, Shevde LA, Ofori-Acquah SF (2010) Mechanisms of transcriptional regulation and prognostic significance of activated leukocyte cell adhesion molecule in cancer. Mol Cancer 9:266. doi: 10.1186/1476-4598-9-266 PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Akman HB, Selcuklu SD, Donoghue MT, Akhavantabasi S, Sapmaz A, Spillane C, Yakicier MC, Erson-Bensan AE (2015) ALCAM is indirectly modulated by miR-125b in MCF7 cells. Tumour Biol 36(5):3511–3520. doi: 10.1007/s13277-014-2987-5 PubMedCrossRefGoogle Scholar
  123. 123.
    Orso F, Quirico L, Virga F, Penna E, Dettori D, Cimino D, Coppo R, Grassi E, Elia AR, Brusa D, Deaglio S, Brizzi MF, Stadler MB, Provero P, Caselle M, Taverna D (2016) miR-214 and miR-148b targeting inhibits dissemination of melanoma and breast cancer. Cancer Res 76(17):5151–5162. doi: 10.1158/0008-5472.CAN-15-1322 PubMedCrossRefGoogle Scholar
  124. 124.
    Davies SR, Dent C, Watkins G, King JA, Mokbel K, Jiang WG (2008) Expression of the cell to cell adhesion molecule, ALCAM, in breast cancer patients and the potential link with skeletal metastasis. Oncol Rep 19(2):555–561PubMedGoogle Scholar
  125. 125.
    Davies S, Jiang WG (2010) ALCAM, activated leukocyte cell adhesion molecule, influences the aggressive nature of breast cancer cells, a potential connection to bone metastasis. Anticancer Res 30(4):1163–1168PubMedGoogle Scholar
  126. 126.
    Gemoll T, Epping F, Heinrich L, Fritzsche B, Roblick UJ, Szymczak S, Hartwig S, Depping R, Bruch HP, Thorns C, Lehr S, Paech A, Habermann JK (2015) Increased cathepsin D protein expression is a biomarker for osteosarcomas, pulmonary metastases and other bone malignancies. Oncotarget 6 (18):16517–16526. doi:10.18632/oncotarget.4140
  127. 127.
    Vishal M, Swetha R, Thejaswini G, Arumugam B, Selvamurugan N (2017) Role of Runx2 in breast cancer-mediated bone metastasis. Int J Biol Macromol 99:608–614. doi: 10.1016/j.ijbiomac.2017.03.021 PubMedCrossRefGoogle Scholar
  128. 128.
    Hansen AG, Arnold SA, Jiang M, Palmer TD, Ketova T, Merkel A, Pickup M, Samaras S, Shyr Y, Moses HL, Hayward SW, Sterling JA, Zijlstra A (2014) ALCAM/CD166 is a TGF-beta-responsive marker and functional regulator of prostate cancer metastasis to bone. Cancer Res 74(5):1404–1415. doi: 10.1158/0008-5472.CAN-13-1296 PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    King JA, Ofori-Acquah SF, Stevens T, Al-Mehdi AB, Fodstad O, Jiang WG (2004) Activated leukocyte cell adhesion molecule in breast cancer: prognostic indicator. Breast Cancer Res 6(5):R478–R487. doi: 10.1186/bcr815 PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Burkhardt M, Mayordomo E, Winzer KJ, Fritzsche F, Gansukh T, Pahl S, Weichert W, Denkert C, Guski H, Dietel M, Kristiansen G (2006) Cytoplasmic overexpression of ALCAM is prognostic of disease progression in breast cancer. J Clin Pathol 59(4):403–409. doi: 10.1136/jcp.2005.028209 PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Jezierska A, Olszewski WP, Pietruszkiewicz J, Olszewski W, Matysiak W, Motyl T (2006) Activated leukocyte cell adhesion molecule (ALCAM) is associated with suppression of breast cancer cells invasion. Med Sci Monit 12(7):BR245–BR256PubMedGoogle Scholar
  132. 132.
    Ihnen M, Muller V, Wirtz RM, Schroder C, Krenkel S, Witzel I, Lisboa BW, Janicke F, Milde-Langosch K (2008) Predictive impact of activated leukocyte cell adhesion molecule (ALCAM/CD166) in breast cancer. Breast Cancer Res Treat 112(3):419–427. doi: 10.1007/s10549-007-9879-y PubMedCrossRefGoogle Scholar
  133. 133.
    Ihnen M, Kohler N, Kersten JF, Milde-Langosch K, Beck K, Holler S, Muller V, Witzel I, Janicke F, Kilic E (2010) Expression levels of activated leukocyte cell adhesion molecule (ALCAM/CD166) in primary breast carcinoma and distant breast cancer metastases. Dis Markers 28(2):71–78. doi: 10.3233/DMA-2010-0685 PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Ihnen M, Wirtz RM, Kalogeras KT, Milde-Langosch K, Schmidt M, Witzel I, Eleftheraki AG, Papadimitriou C, Janicke F, Briassoulis E, Pectasides D, Rody A, Fountzilas G, Muller V (2010) Combination of osteopontin and activated leukocyte cell adhesion molecule as potent prognostic discriminators in HER2- and ER-negative breast cancer. Br J Cancer 103(7):1048–1056. doi: 10.1038/sj.bjc.6605840 PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Zhou P, Du LF, Lv GQ, Yu XM, Gu YL, Li JP, Zhang C (2011) Functional polymorphisms in CD166/ALCAM gene associated with increased risk for breast cancer in a Chinese population. Breast Cancer Res Treat 128(2):527–534. doi: 10.1007/s10549-011-1365-x PubMedCrossRefGoogle Scholar
  136. 136.
    Ihnen M, Kilic E, Kohler N, Loning T, Witzel I, Hagel C, Holler S, Kersten JF, Muller V, Janicke F, Milde-Langosch K (2011) Protein expression analysis of ALCAM and CEACAM6 in breast cancer metastases reveals significantly increased ALCAM expression in metastases of the skin. J Clin Pathol 64(2):146–152. doi: 10.1136/jcp.2010.082602 PubMedCrossRefGoogle Scholar
  137. 137.
    Piao D, Jiang T, Liu G, Wang B, Xu J, Zhu A (2012) Clinical implications of activated leukocyte cell adhesion molecule expression in breast cancer. Mol Biol Rep 39(1):661–668. doi: 10.1007/s11033-011-0783-5 PubMedCrossRefGoogle Scholar
  138. 138.
    Varadi V, Bevier M, Grzybowska E, Johansson R, Enquist-Olsson K, Henriksson R, Butkiewicz D, Pamula-Pilat J, Tecza K, Hemminki K, Lenner P, Forsti A (2012) Genetic variation in ALCAM and other chromosomal instability genes in breast cancer survival. Breast Cancer Res Treat 131(1):311–319. doi: 10.1007/s10549-011-1765-y PubMedCrossRefGoogle Scholar
  139. 139.
    Tan F, Mosunjac M, Adams AL, Adade B, Taye O, Hu Y, Rizzo M, Ofori-Acquah SF (2014) Enhanced down-regulation of ALCAM/CD166 in African-American breast cancer. BMC Cancer 14:715. doi: 10.1186/1471-2407-14-715 PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Burandt E, Bari Noubar T, Lebeau A, Minner S, Burdelski C, Janicke F, Muller V, Terracciano L, Simon R, Sauter G, Wilczak W, Lebok P (2014) Loss of ALCAM expression is linked to adverse phenotype and poor prognosis in breast cancer: a TMA-based immunohistochemical study on 2,197 breast cancer patients. Oncol Rep 32(6):2628–2634. doi: 10.3892/or.2014.3523 PubMedGoogle Scholar
  141. 141.
    Chen MJ, Cheng YM, Chen CC, Chen YC, Shen CJ (2017) MiR-148a and miR-152 reduce tamoxifen resistance in ER+ breast cancer via downregulating ALCAM. Biochem Biophys Res Commun 483(2):840–846. doi: 10.1016/j.bbrc.2017.01.012 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Sioned Owen
    • 1
  • Catherine Zabkiewicz
    • 1
  • Lin Ye
    • 1
  • Andrew J. Sanders
    • 1
  • Chang Gong
    • 1
    • 2
  • Wen G. Jiang
    • 1
  1. 1.Cardiff University School of Medicine, CCMRCCardiff UniversityCardiffUK
  2. 2.Sun Yat-sen Memorial HospitalSun Yat-sen UniversityGuangzhouChina

Personalised recommendations