cGAS-STING Activation in the Tumor Microenvironment and Its Role in Cancer Immunity

  • Geneviève PépinEmail author
  • Michael P. Gantier
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1024)


Stimulator of interferon (IFN) genes (STING) is a key mediator in the immune response to cytoplasmic DNA sensed by cyclic GMP-AMP (cGAMP) synthase (cGAS). After synthesis by cGAS, cGAMP acts as a second messenger activating STING in the cell harboring cytoplasmic DNA but also in adjacent cells through gap junction transfer. While the role of the cGAS-STING pathway in pathogen detection is now well established, its importance in cancer immunity has only recently started to emerge. Nonetheless, STING appears to be an essential component in the recruitment of immune cells to the tumor microenvironment, which is paramount to immune clearance of the tumor. This review presents an overview of the growing literature around the role of the cGAS-STING pathway in the tumor microenvironment, with a specific focus on the role that cancer cells may play in the direct activation of this pathway, and its amplification through cell-cell transfer of cGAMP.


cGAS cGAMP STING Interferon Connexin Cancer 



We thank Rebecca Smith, Jonathan Ferrand, and Lise Boursinhac for the assistance in the preparation of the manuscript. This work was funded in part by the Australian NHMRC (1062683 and 1081167 to M.P.G.), the Australian Research Council (140100594 Future Fellowship to M.P.G.), and the Victorian Government’s Operational Infrastructure Support Program. G.P. is a fellow from Fonds de Recherche du Québec – Santé (FRQS), Canada (35071).


  1. 1.
    He S, Mao X, Sun H, Shirakawa T, Zhang H, Wang X (2015) Potential therapeutic targets in the process of nucleic acid recognition: opportunities and challenges. Trends Pharmacol Sci 36(1):51–64. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  2. 2.
    Luecke S, Paludan SR (2016) Molecular requirements for sensing of intracellular microbial nucleic acids by the innate immune system. Cytokine. doi: 10.1016/j.cyto.2016.10.003 CrossRefPubMedGoogle Scholar
  3. 3.
    Rusinova I, Forster S, Yu S, Kannan A, Masse M, Cumming H, Chapman R, Hertzog PJ (2013) Interferome v2.0: an updated database of annotated interferon-regulated genes. Nucleic Acids Res 41(Database issue):D1040–D1046. doi: 10.1093/nar/gks1215 CrossRefPubMedGoogle Scholar
  4. 4.
    Ishikawa H, Barber GN (2008) STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455(7213):674–678. doi: 10.1038/nature07317 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sun W, Li Y, Chen L, Chen H, You F, Zhou X, Zhou Y, Zhai Z, Chen D, Jiang Z (2009) ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc Natl Acad Sci U S A 106(21):8653–8658. doi: 10.1073/pnas.0900850106 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhong B, Yang Y, Li S, Wang YY, Li Y, Diao F, Lei C, He X, Zhang L, Tien P, Shu HB (2008) The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29(4):538–550. doi: 10.1016/j.immuni.2008.09.003 CrossRefGoogle Scholar
  7. 7.
    Jin L, Waterman PM, Jonscher KR, Short CM, Reisdorph NA, Cambier JC (2008) MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals. Mol Cell Biol 28(16):5014–5026. doi: 10.1128/MCB.00640-08 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Tanaka Y, Chen ZJ (2012) STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci Signal 5(214):ra20. doi: 10.1126/scisignal.2002521 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, Du F, Ren J, Wu YT, Grishin NV, Chen ZJ (2015) Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347(6227):aaa2630. doi: 10.1126/science.aaa2630 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dey B, Dey RJ, Cheung LS, Pokkali S, Guo H, Lee JH, Bishai WR (2015) A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis. Nat Med 21(4):401–406. doi: 10.1038/nm.3813 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Woodward JJ, Iavarone AT, Portnoy DA (2010) c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328(5986):1703–1705. doi: 10.1126/science.1189801 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461(7265):788–792. doi: 10.1038/nature08476 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bhat N, Fitzgerald KA (2014) Recognition of cytosolic DNA by cGAS and other STING-dependent sensors. Eur J Immunol 44(3):634–640. doi: 10.1002/eji.201344127 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sun L, Wu J, Du F, Chen X, Chen ZJ (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339(6121):786–791. doi: 10.1126/science.1232458 CrossRefPubMedGoogle Scholar
  15. 15.
    Wu J, Sun L, Chen X, Du F, Shi H, Chen C, Chen ZJ (2013) Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339(6121):826–830. doi: 10.1126/science.1229963 CrossRefPubMedGoogle Scholar
  16. 16.
    Gao P, Ascano M, Wu Y, Barchet W, Gaffney BL, Zillinger T, Serganov AA, Liu Y, Jones RA, Hartmann G, Tuschl T, Patel DJ (2013) Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153(5):1094–1107. doi: 10.1016/j.cell.2013.04.046 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Rohl I, Hopfner KP, Ludwig J, Hornung V (2013) cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498(7454):380–384. doi: 10.1038/nature12306 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Diner EJ, Burdette DL, Wilson SC, Monroe KM, Kellenberger CA, Hyodo M, Hayakawa Y, Hammond MC, Vance RE (2013) The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep 3(5):1355–1361. doi: 10.1016/j.celrep.2013.05.009 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhang X, Shi H, Wu J, Zhang X, Sun L, Chen C, Chen ZJ (2013) Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol Cell 51(2):226–235. doi: 10.1016/j.molcel.2013.05.022 CrossRefPubMedGoogle Scholar
  20. 20.
    Mankan AK, Schmidt T, Chauhan D, Goldeck M, Honing K, Gaidt M, Kubarenko AV, Andreeva L, Hopfner KP, Hornung V (2014) Cytosolic RNA:DNA hybrids activate the cGAS-STING axis. EMBO J 33(24):2937–2946. doi: 10.15252/embj.201488726 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Pepin G, Nejad C, Thomas BJ, Ferrand J, McArthur K, Bardin PG, Williams BR, Gantier MP (2017) Activation of cGAS-dependent antiviral responses by DNA intercalating agents. Nucleic Acids Res 45(1):198–205. doi: 10.1093/nar/gkw878 CrossRefPubMedGoogle Scholar
  22. 22.
    White MJ, McArthur K, Metcalf D, Lane RM, Cambier JC, Herold MJ, van Delft MF, Bedoui S, Lessene G, Ritchie ME, Huang DC, Kile BT (2014) Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159(7):1549–1562. doi: 10.1016/j.cell.2014.11.036 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Konig N, Fiehn C, Wolf C, Schuster M, Cura Costa E, Tungler V, Alvarez HA, Chara O, Engel K, Goldbach-Mansky R, Gunther C, Lee-Kirsch MA (2017) Familial chilblain lupus due to a gain-of-function mutation in STING. Ann Rheum Dis 76(2):468–472. doi: 10.1136/annrheumdis-2016-209841 CrossRefPubMedGoogle Scholar
  24. 24.
    Mackenzie KJ, Carroll P, Lettice L, Tarnauskaite Z, Reddy K, Dix F, Revuelta A, Abbondati E, Rigby RE, Rabe B, Kilanowski F, Grimes G, Fluteau A, Devenney PS, Hill RE, Reijns MA, Jackson AP (2016) Ribonuclease H2 mutations induce a cGAS/STING-dependent innate immune response. EMBO J 35(8):831–844. doi: 10.15252/embj.201593339 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gray EE, Treuting PM, Woodward JJ, Stetson DB (2015) Cutting edge: cGAS Is required for lethal autoimmune disease in the trex1-deficient mouse model of aicardi-goutieres syndrome. J Immunol 195(5):1939–1943. doi: 10.4049/jimmunol.1500969 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ahn J, Ruiz P, Barber GN (2014) Intrinsic self-DNA triggers inflammatory disease dependent on STING. J Immunol 193(9):4634–4642. doi: 10.4049/jimmunol.1401337 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Dunn GP, Bruce AT, Sheehan KC, Shankaran V, Uppaluri R, Bui JD, Diamond MS, Koebel CM, Arthur C, White JM, Schreiber RD (2005) A critical function for type I interferons in cancer immunoediting. Nat Immunol 6(7):722–729. doi: 10.1038/ni1213 CrossRefPubMedGoogle Scholar
  28. 28.
    Swann JB, Hayakawa Y, Zerafa N, Sheehan KC, Scott B, Schreiber RD, Hertzog P, Smyth MJ (2007) Type I IFN contributes to NK cell homeostasis, activation, and antitumor function. J Immunol 178(12):7540–7549CrossRefPubMedGoogle Scholar
  29. 29.
    Diamond MS, Kinder M, Matsushita H, Mashayekhi M, Dunn GP, Archambault JM, Lee H, Arthur CD, White JM, Kalinke U, Murphy KM, Schreiber RD (2011) Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med 208(10):1989–2003. doi: 10.1084/jem.20101158 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Fuertes MB, Kacha AK, Kline J, Woo SR, Kranz DM, Murphy KM, Gajewski TF (2011) Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+ dendritic cells. J Exp Med 208(10):2005–2016. doi: 10.1084/jem.20101159 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Klarquist J, Hennies CM, Lehn MA, Reboulet RA, Feau S, Janssen EM (2014) STING-mediated DNA sensing promotes antitumor and autoimmune responses to dying cells. J Immunol 193(12):6124–6134. doi: 10.4049/jimmunol.1401869 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MY, Duggan R, Wang Y, Barber GN, Fitzgerald KA, Alegre ML, Gajewski TF (2014) STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41(5):830–842. doi: 10.1016/j.immuni.2014.10.017 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Demaria O, De Gassart A, Coso S, Gestermann N, Di Domizio J, Flatz L, Gaide O, Michielin O, Hwu P, Petrova TV, Martinon F, Modlin RL, Speiser DE, Gilliet M (2015) STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc Natl Acad Sci U S A 112(50):15408–15413. doi: 10.1073/pnas.1512832112 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kang J, Demaria S, Formenti S (2016) Current clinical trials testing the combination of immunotherapy with radiotherapy. J Immunother Cancer 4:51. doi: 10.1186/s40425-016-0156-7 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ohkuri T, Ghosh A, Kosaka A, Zhu J, Ikeura M, David M, Watkins SC, Sarkar SN, Okada H (2014) STING contributes to antiglioma immunity via triggering type I IFN signals in the tumor microenvironment. Cancer Immunol Res 2(12):1199–1208. doi: 10.1158/2326-6066.CIR-14-0099 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tang CH, Zundell JA, Ranatunga S, Lin C, Nefedova Y, Del Valle JR, Hu CC (2016) Agonist-mediated activation of STING induces apoptosis in malignant B cells. Cancer Res 76(8):2137–2152. doi: 10.1158/0008-5472.CAN-15-1885 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE, Katibah GE, Woo SR, Lemmens E, Banda T, Leong JJ, Metchette K, Dubensky TW Jr, Gajewski TF (2015) Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep 11(7):1018–1030. doi: 10.1016/j.celrep.2015.04.031 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lara PN Jr, Douillard JY, Nakagawa K, von Pawel J, McKeage MJ, Albert I, Losonczy G, Reck M, Heo DS, Fan X, Fandi A, Scagliotti G (2011) Randomized phase III placebo-controlled trial of carboplatin and paclitaxel with or without the vascular disrupting agent vadimezan (ASA404) in advanced non-small-cell lung cancer. J Clin Oncol 29(22):2965–2971. doi: 10.1200/JCO.2011.35.0660. Epub 2011 Jun 27.CrossRefPubMedGoogle Scholar
  39. 39.
    Corrales L, Gajewski TF (2016) Endogenous and pharmacologic targeting of the STING pathway in cancer immunotherapy. Cytokine 77:245–247. doi: 10.1016/j.cyto.2015.08.258 CrossRefPubMedGoogle Scholar
  40. 40.
    Baird JR, Friedman D, Cottam B, Dubensky TW Jr, Kanne DB, Bambina S, Bahjat K, Crittenden MR, Gough MJ (2016) Radiotherapy combined with novel STING-targeting oligonucleotides results in regression of established tumors. Cancer Res 76(1):50–61 CrossRefPubMedGoogle Scholar
  41. 41.
    Li T, Cheng H, Yuan H, Xu Q, Shu C, Zhang Y, Xu P, Tan J, Rui Y, Li P, Tan X (2016) Antitumor activity of cGAMP via stimulation of cGAS-cGAMP-STING-IRF3 mediated innate immune response. Sci Rep 6:19049 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Nakamura T, Miyabe H, Hyodo M, Sato Y, Hayakawa Y, Harashima H (2015) Liposomes loaded with a STING pathway ligand, cyclic di-GMP, enhance cancer immunotherapy against metastatic melanoma. J Control Release 216:149–157. doi: 10.1016/j.jconrel.2015.08.026 CrossRefPubMedGoogle Scholar
  43. 43.
    Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27(4):450–461. doi: 10.1016/j.ccell.2015.03.001 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wang H, Hu S, Chen X, Shi H, Chen C, Sun L, Chen ZJ (2017) cGAS is essential for the antitumor effect of immune checkpoint blockade. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1621363114 CrossRefGoogle Scholar
  45. 45.
    Moore E, Clavijo PE, Davis R, Cash H, Van Waes C, Kim Y, Allen C (2016) Established T cell-inflamed tumors rejected after adaptive resistance was reversed by combination STING activation and PD-1 pathway blockade. Cancer Immunol Res 4(12):1061–1071. doi: 10.1158/2326-6066.CIR-16-0104 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Fu J, Kanne DB, Leong M, Glickman LH, McWhirter SM, Lemmens E, Mechette K, Leong JJ, Lauer P, Liu W, Sivick KE, Zeng Q, Soares KC, Zheng L, Portnoy DA, Woodward JJ, Pardoll DM, Dubensky TW Jr, Kim Y (2015) STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci Transl Med 7(283):283ra252. doi: 10.1126/scitranslmed.aaa4306 CrossRefGoogle Scholar
  47. 47.
    Lemos H, Mohamed E, Huang L, Ou R, Pacholczyk G, Arbab AS, Munn D, Mellor AL (2016) STING promotes the growth of tumors characterized by low antigenicity via IDO activation. Cancer Res 76(8):2076–2081. doi: 10.1158/0008-5472.CAN-15-1456 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Huang L, Li L, Lemos H, Chandler PR, Pacholczyk G, Baban B, Barber GN, Hayakawa Y, McGaha TL, Ravishankar B, Munn DH, Mellor AL (2013) Cutting edge: DNA sensing via the STING adaptor in myeloid dendritic cells induces potent tolerogenic responses. J Immunol 191(7):3509–3513. doi: 10.4049/jimmunol.1301419 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lemos H, Huang L, Chandler PR, Mohamed E, Souza GR, Li L, Pacholczyk G, Barber GN, Hayakawa Y, Munn DH, Mellor AL (2014) Activation of the STING adaptor attenuates experimental autoimmune encephalitis. J Immunol 192(12):5571–5578. doi: 10.4049/jimmunol.1303258 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Andzinski L, Spanier J, Kasnitz N, Kroger A, Jin L, Brinkmann MM, Kalinke U, Weiss S, Jablonska J, Lienenklaus S (2016) Growing tumors induce a local STING dependent Type I IFN response in dendritic cells. Int J Cancer 139(6):1350–1357. doi: 10.1002/ijc.30159 CrossRefPubMedGoogle Scholar
  51. 51.
    Stetson DB, Medzhitov R (2006) Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24(1):93–103. doi: 10.1016/j.immuni.2005.12.003 CrossRefPubMedGoogle Scholar
  52. 52.
    Ablasser A, Schmid-Burgk JL, Hemmerling I, Horvath GL, Schmidt T, Latz E, Hornung V (2013) Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503(7477):530–534. doi: 10.1038/nature12640 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Stetson DB, Ko JS, Heidmann T, Medzhitov R (2008) Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134(4):587–598. doi: 10.1016/j.cell.2008.06.032 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Lan YY, Londono D, Bouley R, Rooney MS, Hacohen N (2014) Dnase2a deficiency uncovers lysosomal clearance of damaged nuclear DNA via autophagy. Cell Rep 9(1):180–192. doi: 10.1016/j.celrep.2014.08.074 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kretschmer S, Wolf C, Konig N, Staroske W, Guck J, Hausler M, Luksch H, Nguyen LA, Kim B, Alexopoulou D, Dahl A, Rapp A, Cardoso MC, Shevchenko A, Lee-Kirsch MA (2015) SAMHD1 prevents autoimmunity by maintaining genome stability. Ann Rheum Dis 74(3):e17. doi: 10.1136/annrheumdis-2013-204845 CrossRefPubMedGoogle Scholar
  56. 56.
    Gehrke N, Mertens C, Zillinger T, Wenzel J, Bald T, Zahn S, Tuting T, Hartmann G, Barchet W (2013) Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity 39(3):482–495. doi: 10.1016/j.immuni.2013.08.004 CrossRefPubMedGoogle Scholar
  57. 57.
    Hartlova A, Erttmann SF, Raffi FA, Schmalz AM, Resch U, Anugula S, Lienenklaus S, Nilsson LM, Kroger A, Nilsson JA, Ek T, Weiss S, Gekara NO (2015) DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity 42(2):332–343. doi: 10.1016/j.immuni.2015.01.012 CrossRefPubMedGoogle Scholar
  58. 58.
    Wolf C, Rapp A, Berndt N, Staroske W, Schuster M, Dobrick-Mattheuer M, Kretschmer S, Konig N, Kurth T, Wieczorek D, Kast K, Cardoso MC, Gunther C, Lee-Kirsch MA (2016) RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA. Nat Commun 7:11752. doi: 10.1038/ncomms11752 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi: 10.1016/j.cell.2011.02.013 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Lam AR, Le Bert N, Ho SS, Shen YJ, Tang ML, Xiong GM, Croxford JL, Koo CX, Ishii KJ, Akira S, Raulet DH, Gasser S (2014) RAE1 ligands for the NKG2D receptor are regulated by STING-dependent DNA sensor pathways in lymphoma. Cancer Res 74(8):2193–2203. doi: 10.1158/0008-5472.CAN-13-1703 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Parkes EE, Walker SM, Taggart LE, McCabe N, Knight LA, Wilkinson R, McCloskey KD, Buckley NE, Savage KI, Salto-Tellez M, McQuaid S, Harte MT, Mullan PB, Harkin DP, Kennedy RD (2017) Activation of STING-dependent innate immune signaling By S-phase-specific DNA damage in breast cancer. J Natl Cancer Inst 109(1). doi: 10.1093/jnci/djw199 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Shen YJ, Le Bert N, Chitre AA, Koo CX, Nga XH, Ho SS, Khatoo M, Tan NY, Ishii KJ, Gasser S (2015) Genome-derived cytosolic DNA mediates type I interferon-dependent rejection of B cell lymphoma cells. Cell Rep 11(3):460–473. doi: 10.1016/j.celrep.2015.03.041 CrossRefPubMedGoogle Scholar
  63. 63.
    Ho SS, Zhang WY, Tan NY, Khatoo M, Suter MA, Tripathi S, Cheung FS, Lim WK, Tan PH, Ngeow J, Gasser S (2016) The DNA structure-specific endonuclease MUS81 mediates DNA sensor STING-dependent host rejection of prostate cancer cells. Immunity 44(5):1177–1189. doi: 10.1016/j.immuni.2016.04.010 CrossRefPubMedGoogle Scholar
  64. 64.
    Xia T, Konno H, Ahn J, Barber GN (2016) Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Rep 14(2):282–297. doi: 10.1016/j.celrep.2015.12.029 CrossRefPubMedGoogle Scholar
  65. 65.
    Xia T, Konno H, Barber GN (2016) Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis. Cancer Res. doi: 10.1158/0008-5472.CAN-16-1404 CrossRefPubMedGoogle Scholar
  66. 66.
    Gall A, Treuting P, Elkon KB, Loo YM, Gale M Jr, Barber GN, Stetson DB (2012) Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 36(1):120–131. doi: 10.1016/j.immuni.2011.11.018 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Gajewski TF (2006) Identifying and overcoming immune resistance mechanisms in the melanoma tumor microenvironment. Clin Cancer Res 12(7 Pt 2):2326s–2330s. doi: 10.1158/1078-0432.CCR-05-2517 CrossRefPubMedGoogle Scholar
  68. 68.
    Hwang WT, Adams SF, Tahirovic E, Hagemann IS, Coukos G (2012) Prognostic significance of tumor-infiltrating T cells in ovarian cancer: a meta-analysis. Gynecol Oncol 124(2):192–198. doi: 10.1016/j.ygyno.2011.09.039 CrossRefPubMedGoogle Scholar
  69. 69.
    Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, Ellis IO, Green AR (2011) Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol 29(15):1949–1955. doi: 10.1200/JCO.2010.30.5037 CrossRefPubMedGoogle Scholar
  70. 70.
    Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoue F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pages F (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964. doi: 10.1126/science.1129139 CrossRefPubMedGoogle Scholar
  71. 71.
    Pages F, Kirilovsky A, Mlecnik B, Asslaber M, Tosolini M, Bindea G, Lagorce C, Wind P, Marliot F, Bruneval P, Zatloukal K, Trajanoski Z, Berger A, Fridman WH, Galon J (2009) In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol 27(35):5944–5951. doi: 10.1200/JCO.2008.19.6147 CrossRefPubMedGoogle Scholar
  72. 72.
    Yang CA, Huang HY, Chang YS, Lin CL, Lai IL, Chang JG (2017) DNA-sensing and nuclease gene expressions as markers for colorectal cancer progression. Oncology 92(2):115–124. doi: 10.1159/000452281 CrossRefPubMedGoogle Scholar
  73. 73.
    Kodigepalli KM, Nanjundan M (2015) Induction of PLSCR1 in a STING/IRF3-dependent manner upon vector transfection in ovarian epithelial cells. PLoS One 10(2):e0117464. doi: 10.1371/journal.pone.0117464 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Small W Jr, Bacon MA, Bajaj A, Chuang LT, Fisher BJ, Harkenrider MM, Jhingran A, Kitchener HC, Mileshkin LR, Viswanathan AN, Gaffney DK (2017) Cervical cancer: a global health crisis. Cancer. doi: 10.1002/cncr.30667 CrossRefPubMedGoogle Scholar
  75. 75.
    Xiao D, Huang W, Ou M, Guo C, Ye X, Liu Y, Wang M, Zhang B, Zhang N, Huang S, Zang J, Zhou Z, Wen Z, Zeng C, Wu C, Huang C, Wei X, Yang G, Jing C (2016) Interaction between susceptibility loci in cGAS-STING pathway, MHC gene and HPV infection on the risk of cervical precancerous lesions in Chinese population. Oncotarget. doi: 10.18632/oncotarget.12399
  76. 76.
    Sunthamala N, Thierry F, Teissier S, Pientong C, Kongyingyoes B, Tangsiriwatthana T, Sangkomkamhang U, Ekalaksananan T (2014) E2 proteins of high risk human papillomaviruses down-modulate STING and IFN-kappa transcription in keratinocytes. PLoS One 9(3):e91473. doi: 10.1371/journal.pone.0091473 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Lau L, Gray EE, Brunette RL, Stetson DB (2015) DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science 350(6260):568–571. doi: 10.1126/science.aab3291 CrossRefPubMedGoogle Scholar
  78. 78.
    Song S, Peng P, Tang Z, Zhao J, Wu W, Li H, Shao M, Li L, Yang C, Duan F, Zhang M, Zhang J, Wu H, Li C, Wang X, Wang H, Ruan Y, Gu J (2017) Decreased expression of STING predicts poor prognosis in patients with gastric cancer. Sci Rep 7:39858. doi: 10.1038/srep39858 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Loewenstein WR, Kanno Y (1966) Intercellular communication and the control of tissue growth: lack of communication between cancer cells. Nature 209(5029):1248–1249CrossRefPubMedGoogle Scholar
  80. 80.
    Aasen T, Mesnil M, Naus CC, Lampe PD, Laird DW (2016) Gap junctions and cancer: communicating for 50 years. Nat Rev Cancer 16(12):775–788. doi: 10.1038/nrc.2016.105 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Xu N, Chen HJ, Chen SH, Xue XY, Chen H, Zheng QS, Wei Y, Li XD, Huang JB, Cai H, Sun XL (2016) Reduced Connexin 43 expression is associated with tumor malignant behaviors and biochemical recurrence-free survival of prostate cancer. Oncotarget 7(41):67476–67484. doi: 10.18632/oncotarget.11231 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Danos K, Brauswetter D, Birtalan E, Pato A, Bencsik G, Krenacs T, Petak I, Tamas L (2016) The potential prognostic value of Connexin 43 expression in head and neck squamous cell carcinomas. Appl Immunohistochem Mol Morphol 24(7):476–481. doi: 10.1097/PAI.0000000000000212 CrossRefPubMedGoogle Scholar
  83. 83.
    Ostrow RS, Manias DA, Fong WJ, Zachow KR, Faras AJ (1987) A survey of human cancers for human papillomavirus DNA by filter hybridization. Cancer 59(3):429–434CrossRefPubMedGoogle Scholar
  84. 84.
    Sun P, Dong L, MacDonald AI, Akbari S, Edward M, Hodgins MB, Johnstone SR, Graham SV (2015) HPV16 E6 controls the gap junction protein Cx43 in cervical tumour cells. Virus 7(10):5243–5256. doi: 10.3390/v7102871 CrossRefGoogle Scholar
  85. 85.
    Tittarelli A, Guerrero I, Tempio F, Gleisner MA, Avalos I, Sabanegh S, Ortiz C, Michea L, Lopez MN, Mendoza-Naranjo A, Salazar-Onfray F (2016) Overexpression of Connexin 43 reduces melanoma proliferative and metastatic capacity. Br J Cancer 115(9):e14. doi: 10.1038/bjc.2016.296 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Li X, Pan JH, Song B, Xiong EQ, Chen ZW, Zhou ZS, Su YP (2012) Suppression of CX43 expression by miR-20a in the progression of human prostate cancer. Cancer Biol Ther 13(10):890–898. doi: 10.4161/cbt.20841 CrossRefPubMedGoogle Scholar
  87. 87.
    Qin H, Shao Q, Curtis H, Galipeau J, Belliveau DJ, Wang T, Alaoui-Jamali MA, Laird DW (2002) Retroviral delivery of Connexin genes to human breast tumor cells inhibits in vivo tumor growth by a mechanism that is independent of significant gap junctional intercellular communication. J Biol Chem 277(32):29132–29138. doi: 10.1074/jbc.M200797200 CrossRefPubMedGoogle Scholar
  88. 88.
    Shi H, Shi D, Wu Y, Shen Q, Li J (2016) Qigesan inhibits migration and invasion of esophageal cancer cells via inducing connexin expression and enhancing gap junction function. Cancer Lett 380(1):184–190. doi: 10.1016/j.canlet.2016.06.015 CrossRefPubMedGoogle Scholar
  89. 89.
    Stewart MK, Bechberger JF, Welch I, Naus CC, Laird DW (2015) Cx26 knockout predisposes the mammary gland to primary mammary tumors in a DMBA-induced mouse model of breast cancer. Oncotarget 6(35):37185–37199. doi: 10.18632/oncotarget.5953 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Pepin G, Ferrand J, Honing K, Jayasekara WS, Cain JE, Behlke MA, Gough DJ, Williams BRG, Hornung V, Gantier MP (2016) Cre-dependent DNA recombination activates a STING-dependent innate immune response. Nucleic Acids Res 44(11):5356–5364. doi: 10.1093/nar/gkw405 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Ito A, Katoh F, Kataoka TR, Okada M, Tsubota N, Asada H, Yoshikawa K, Maeda S, Kitamura Y, Yamasaki H, Nojima H (2000) A role for heterologous gap junctions between melanoma and endothelial cells in metastasis. J Clin Invest 105(9):1189–1197. doi: 10.1172/JCI8257 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Zhang A, Hitomi M, Bar-Shain N, Dalimov Z, Ellis L, Velpula KK, Fraizer GC, Gourdie RG, Lathia JD (2015) Connexin 43 expression is associated with increased malignancy in prostate cancer cell lines and functions to promote migration. Oncotarget 6(13):11640–11651. doi: 10.18632/oncotarget.3449 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Chen Q, Boire A, Jin X, Valiente M, Er EE, Lopez-Soto A, Jacob LS, Patwa R, Shah H, Xu K, Cross JR, Massague J (2016) Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 533(7604):493–498. doi: 10.1038/nature18268 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Zou ZW, Chen HJ, Yu JL, Huang ZH, Fang S, Lin XH (2016) Gap junction composed of connexin43 modulates 5fluorouracil, oxaliplatin and irinotecan resistance on colorectal cancers. Mol Med Rep 14(5):4893–4900. doi: 10.3892/mmr.2016.5812 CrossRefPubMedGoogle Scholar
  95. 95.
    Yang Y, Zhu J, Zhang N, Zhao Y, Li WY, Zhao FY, Ou YR, Qin SK, Wu Q (2016) Impaired gap junctions in human hepatocellular carcinoma limit intrinsic oxaliplatin chemosensitivity: a key role of connexin 26. Int J Oncol 48(2):703–713. doi: 10.3892/ijo.2015.3266 CrossRefPubMedGoogle Scholar
  96. 96.
    Murphy SF, Varghese RT, Lamouille S, Guo S, Pridham KJ, Kanabur P, Osimani AM, Sharma S, Jourdan J, Rodgers CM, Simonds GR, Gourdie RG, Sheng Z (2016) Connexin 43 inhibition sensitizes chemoresistant glioblastoma cells to temozolomide. Cancer Res 76(1):139–149. doi: 10.1158/0008-5472.CAN-15-1286 CrossRefPubMedGoogle Scholar
  97. 97.
    Minn AJ (2015) Interferons and the immunogenic effects of cancer therapy. Trends Immunol 36(11):725–737. doi: 10.1016/ CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Ahn J, Xia T, Konno H, Konno K, Ruiz P, Barber GN (2014) Inflammation-driven carcinogenesis is mediated through STING. Nat Commun 5:5166. doi: 10.1038/ncomms6166 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Kitai Y, Kawasaki T, Sueyoshi T, Kobiyama K, Ishii KJ, Zou J, Akira S, Matsuda T, Kawai T (2017) DNA-containing exosomes derived from cancer cells treated with topotecan activate a STING-dependent pathway and reinforce antitumor immunity. J Immunol 198(4):1649–1659. doi: 10.4049/jimmunol.1601694 CrossRefPubMedGoogle Scholar
  100. 100.
    Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, Li XD, Mauceri H, Beckett M, Darga T, Huang X, Gajewski TF, Chen ZJ, Fu YX, Weichselbaum RR (2014) STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41(5):843–852. doi: 10.1016/j.immuni.2014.10.019 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Erdal E, Haider S, Rehwinkel J, Harris AL, McHugh PJ (2017) A prosurvival DNA damage-induced cytoplasmic interferon response is mediated by end resection factors and is limited by Trex1. Genes Dev 31(4):353–369. doi: 10.1101/gad.289769.116 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Gaston J, Cheradame L, Yvonnet V, Deas O, Poupon MF, Judde JG, Cairo S, Goffin V (2016) Intracellular STING inactivation sensitizes breast cancer cells to genotoxic agents. Oncotarget. doi: 10.18632/oncotarget.12858

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonAustralia
  2. 2.Department of Molecular and Translational ScienceMonash UniversityClaytonAustralia

Personalised recommendations