Microbial Factors in Inflammatory Diseases and Cancers

  • Hong Sheng Ong
  • Howard Chi Ho YimEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1024)


The intestinal microbes form a symbiotic relationship with their human host to harvest energy for themselves and their host and to shape the immune system of their host. However, alteration of this relationship, which is named as a dysbiosis, has been associated with the development of different inflammatory diseases and cancers. It is found that metabolites, cellular components, and virulence factors derived from the gut microbiota interact with the host locally or systemically to modulate the dysbiosis and the development of these diseases. In this book chapter, we discuss the role of these microbial factors in regulating the host signaling pathways, the composition and load of the gut microbiota, the co-metabolism of the host and the microbiota, the host immune system, and physiology. In particular, we highlight how each microbial factor can contribute in the manifestation of many diseases such as cancers, Inflammatory Bowel Diseases, obesity, type-2 diabetes, non-alcoholic fatty liver diseases, nonalcoholic steatohepatitis, and cardiovascular diseases.


Microbiota Inflammation Inflammasome TLR NLR Microbial metabolites Inflammatory diseases Cancers Dysbiosis GPCR Inflammatory Bowel Diseases (IBD) Obesity Type 2 diabetes Non-alcoholic fatty liver diseases (NAFLD) Non-alcoholic steatohepatitis (NASH) Atherosclerosis 


  1. 1.
    Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489(7415):242–249PubMedCrossRefGoogle Scholar
  2. 2.
    Tilg H, Moschen AR (2014) Microbiota and diabetes: an evolving relationship. Gut 63(9):1513–1521PubMedCrossRefGoogle Scholar
  3. 3.
    Bergman EN (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 70(2):567–590PubMedCrossRefGoogle Scholar
  4. 4.
    Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM et al (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61(2):364–371PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F et al (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A 105(43):16767–16772PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K et al (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 4:1829PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C et al (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156(1–2):84–96PubMedCrossRefGoogle Scholar
  8. 8.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031PubMedCrossRefGoogle Scholar
  9. 9.
    Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA et al (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 18(1):190–195CrossRefGoogle Scholar
  10. 10.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A et al (2009) A core gut microbiome in obese and lean twins. Nature 457(7228):480–484PubMedCrossRefGoogle Scholar
  11. 11.
    Nair S, Cope K, Risby TH, Diehl AM (2001) Obesity and female gender increase breath ethanol concentration: potential implications for the pathogenesis of nonalcoholic steatohepatitis. Am J Gastroenterol 96(4):1200–1204PubMedCrossRefGoogle Scholar
  12. 12.
    Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F et al (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461(7268):1282–1286PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA et al (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341(6145):569PubMedCrossRefGoogle Scholar
  14. 14.
    Macia L, Tan J, Vieira AT, Leach K, Stanley D et al (2015) Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun 6:6734PubMedCrossRefGoogle Scholar
  15. 15.
    Yim HCH, Wang D, Yu L, White CL, Faber PW et al (2016) The kinase activity of PKR represses inflammasome activity. Cell Res 26(3):367–379PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Yim HCH, Williams BRG (2014) Protein kinase R and the inflammasome. J Interf Cytokine Res 34(6):447–454CrossRefGoogle Scholar
  17. 17.
    Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y et al (2013) Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500(7461):232–236PubMedCrossRefGoogle Scholar
  18. 18.
    Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G et al (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504(7480):446–450PubMedCrossRefGoogle Scholar
  19. 19.
    Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104(34):13780–13785PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E et al (2006) Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55(2):205PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Treem WR, Ahsan N, Shoup M, Hyams JS (1994) Fecal short-chain fatty acids in children with inflammatory bowel disease. J Pediatr Gastroenterol Nutr 18(2):159–164PubMedCrossRefGoogle Scholar
  22. 22.
    Vital M, Penton CR, Wang Q, Young VB, Antonopoulos DA et al (2013) A gene-targeted approach to investigate the intestinal butyrate-producing bacterial community. Microbiome 1(1):8PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N et al (2014) Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 20(2):159–166PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Vieira AT, Macia L, Galvão I, Martins FS, Canesso MCC et al (2015) A role for gut microbiota and the metabolite-sensing receptor GPR43 in a murine model of gout. Arthritis Rheumatol 67(6):1646–1656PubMedCrossRefGoogle Scholar
  25. 25.
    Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R et al (2014) Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40(1):128–139PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Belcheva A, Irrazabal T, Robertson SJ, Streutker C, Maughan H et al (2014) Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells. Cell 158(2):288–299PubMedCrossRefGoogle Scholar
  27. 27.
    Basson A, Trotter A, Rodriguez-Palacios A, Cominelli F (2016) Mucosal interactions between genetics, diet, and microbiome in inflammatory bowel disease. Front Immunol 7:290PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Thorburn AN, Macia L, Mackay CR (2014) Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity 40(6):833–842PubMedCrossRefGoogle Scholar
  29. 29.
    Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G et al (2013) Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39(2):372–385PubMedCrossRefGoogle Scholar
  30. 30.
    Li Y, Innocentin S, Withers DR, Roberts NA, Gallagher AR et al (2011) Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147(3):629–640PubMedCrossRefGoogle Scholar
  31. 31.
    Carbonero F, Benefiel AC, Alizadeh-Ghamsari AH, Gaskins HR (2012) Microbial pathways in colonic sulfur metabolism and links with health and disease. Front Physiol 3:448PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ijssennagger N, van der Meer R, van Mil SWC (2016) Sulfide as a Mucus Barrier-Breaker in inflammatory bowel disease? Trends Mol Med 22(3):190–199PubMedCrossRefGoogle Scholar
  33. 33.
    Scanlan PD, Shanahan F, Marchesi JR (2009) Culture-independent analysis of desulfovibrios in the human distal colon of healthy, colorectal cancer and polypectomized individuals. FEMS Microbiol Ecol 69(2):213–221PubMedCrossRefGoogle Scholar
  34. 34.
    Gibson GR, Cummings JH, Macfarlane GT (1991) Growth and activities of sulphate-reducing bacteria in gut contents of healthy subjects and patients with ulcerative colitis. FEMS Microbiol Ecol 9(2):103–111CrossRefGoogle Scholar
  35. 35.
    Jia W, Whitehead RN, Griffiths L, Dawson C, Bai H et al (2012) Diversity and distribution of sulphate-reducing bacteria in human faeces from healthy subjects and patients with inflammatory bowel disease. FEMS Immunol Med Microbiol 65(1):55–68PubMedCrossRefGoogle Scholar
  36. 36.
    Loubinoux J, Bronowicki J-P, Pereira IAC, Mougenel J-L, Faou AE (2002) Sulfate-reducing bacteria in human feces and their association with inflammatory bowel diseases. FEMS Microbiol Ecol 40(2):107–112PubMedCrossRefGoogle Scholar
  37. 37.
    Mills DJS, Tuohy KM, Booth J, Buck M, Crabbe MJC et al (2008) Dietary glycated protein modulates the colonic microbiota towards a more detrimental composition in ulcerative colitis patients and non-ulcerative colitis subjects. J Appl Microbiol 105(3):706–714PubMedCrossRefGoogle Scholar
  38. 38.
    Pitcher MC, Beatty ER, Cummings JH (2000) The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis. Gut 46(1):64–72PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Verma R, Verma AK, Ahuja V, Paul J (2010) Real-time analysis of mucosal flora in patients with inflammatory bowel disease in India. J Clin Microbiol 48(11):4279–4282PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Zinkevich V, Beech IB (2000) Screening of sulfate-reducing bacteria in colonoscopy samples from healthy and colitic human gut mucosa. FEMS Microbiol Ecol 34(2):147–155PubMedCrossRefGoogle Scholar
  41. 41.
    Levine J, Ellis CJ, Furne JK, Springfield J, Levitt MD (1998) Fecal hydrogen sulfide production in ulcerative colitis. Am J Gastroenterol 93(1):83–87PubMedCrossRefGoogle Scholar
  42. 42.
    Babidge W, Millard S, Roediger W (1998) Sulfides impair short chain fatty acid beta-oxidation at acyl-CoA dehydrogenase level in colonocytes: implications for ulcerative colitis. Mol Cell Biochem 181(1–2):117–124PubMedCrossRefGoogle Scholar
  43. 43.
    Christl SU, Eisner H-D, Dusel G, Kasper H, Scheppach W (1996) Antagonistic effects of sulfide and butyrate on proliferation of colonic mucosa. Dig Dis Sci 41(12):2477–2481PubMedCrossRefGoogle Scholar
  44. 44.
    Roediger WE, Duncan A, Kapaniris O, Millard S (1993) Reducing sulfur compounds of the colon impair colonocyte nutrition: implications for ulcerative colitis. Gastroenterology 104(3):802–809PubMedCrossRefGoogle Scholar
  45. 45.
    Ijssennagger N, Belzer C, Hooiveld GJ, Dekker J, van Mil SWC et al (2015) Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. Proc Natl Acad Sci U S A 112(32):10038–10043PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Kanazawa K, Konishi F, Mitsuoka T, Terada A, Itoh K et al (1996) Factors influencing the development of sigmoid colon cancer: Bacteriologic and biochemical studies. Cancer 77(8):1701PubMedCrossRefGoogle Scholar
  47. 47.
    Attene-Ramos MS, Wagner ED, Gaskins HR, Plewa MJ (2007) Hydrogen sulfide induces direct radical-associated DNA damage. Mol Cancer Res 5(5):455–459PubMedCrossRefGoogle Scholar
  48. 48.
    Attene-Ramos MS, Wagner ED, Plewa MJ, Gaskins HR (2006) Evidence that hydrogen sulfide is a genotoxic agent. Mol Cancer Res 4(1):9–14PubMedCrossRefGoogle Scholar
  49. 49.
    Deplancke B, Gaskins HR (2003) Hydrogen sulfide induces serum-independent cell cycle entry in nontransformed rat intestinal epithelial cells. FASEB J 17(10):1310–1312PubMedCrossRefGoogle Scholar
  50. 50.
    Wahlström A, Sayin SI, Marschall H-U, Bäckhed F (2016) Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 24(1):41–50PubMedCrossRefGoogle Scholar
  51. 51.
    Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B (2009) Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev 89(1):147–191PubMedCrossRefGoogle Scholar
  52. 52.
    Teodoro JS, Rolo AP, Palmeira CM (2011) Hepatic FXR: key regulator of whole-body energy metabolism. Trends Endocrinol Metab 22(11):458–466PubMedCrossRefGoogle Scholar
  53. 53.
    Lambert G, Amar MJA, Guo G, Brewer HB, Gonzalez FJ, Sinal CJ (2003) The farnesoid X-receptor is an essential regulator of cholesterol homeostasis. J Biol Chem 278(4):2563–2570PubMedCrossRefGoogle Scholar
  54. 54.
    Ma K, Saha PK, Chan L, Moore DD (2006) Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest 116(4):1102–1109PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Hanniman EA, Lambert G, McCarthy TC, Sinal CJ (2005) Loss of functional farnesoid X receptor increases atherosclerotic lesions in apolipoprotein E-deficient mice. J Lipid Res 46(12):2595–2604PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang Y, Wang X, Vales C, Lee FY, Lee H et al (2006) FXR deficiency causes reduced atherosclerosis in Ldlr/mice. Arterioscler Thromb Vasc Biol 26(10):2316–2321PubMedCrossRefGoogle Scholar
  57. 57.
    Parséus A, Sommer N, Sommer F, Caesar R, Molinaro A et al (2017) Microbiota-induced obesity requires farnesoid X receptor. Gut 66(3):429–437PubMedCrossRefGoogle Scholar
  58. 58.
    Prawitt J, Abdelkarim M, Stroeve JHM, Popescu I, Duez H et al (2011) Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes 60(7):1861–1871PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Zhang Y, Ge X, Heemstra LA, Chen W-D, Xu J et al (2012) Loss of FXR protects against diet-induced obesity and accelerates liver carcinogenesis in ob/ob mice. Mol Endocrinol 26(2):272–280PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Yang Z-X, Shen W, Sun H (2010) Effects of nuclear receptor FXR on the regulation of liver lipid metabolism in patients with non-alcoholic fatty liver disease. Hepatol Int 4(4):741–748PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Thomas C, Gioiello A, Noriega L, Strehle A, Oury J et al (2009) TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 10(3):167–177PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW et al (2006) Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439(7075):484–489PubMedCrossRefGoogle Scholar
  63. 63.
    Pols TWH, Nomura M, Harach T, Lo Sasso G, Oosterveer MH et al (2011) TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab 14(6):747–757PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Perino A, Pols TWH, Nomura M, Stein S, Pellicciari R, Schoonjans K (2014) TGR5 reduces macrophage migration through mTOR-induced C/EBPβ differential translation. J Clin Invest 124(12):5424–5436PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Levy M, Thaiss CA, Zeevi D, Dohnalová L, Zilberman-Schapira G et al (2015) Microbiota-Modulated Metabolites Shape the Intestinal Microenvironment by Regulating NLRP6 Inflammasome Signaling. Cell 163(6):1428–1443PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Micro 12(10):661–672CrossRefGoogle Scholar
  67. 67.
    Ou J, DeLany JP, Zhang M, Sharma S, O’Keefe SJD (2012) Association between low colonic short-chain fatty acids and high bile acids in high colon cancer risk populations. Nutr Cancer 64(1):34–40PubMedCrossRefGoogle Scholar
  68. 68.
    Ou J, Carbonero F, Zoetendal EG, DeLany JP, Wang M et al (2013) Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am J Clin Nutr 98(1):111–120PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S et al (2013) Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499(7456):97–101PubMedCrossRefGoogle Scholar
  70. 70.
    Cho CE, Caudill MA (2017) Trimethylamine-N-oxide: friend, foe, or simply caught in the cross-fire? Trends Endocrinol Metab 28(2):121–130PubMedCrossRefGoogle Scholar
  71. 71.
    Tang WHW, Wang Z, Levison BS, Koeth RA, Britt EB et al (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368(17):1575–1584PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Koeth RA, Wang Z, Levison BS, Buffa JA, Org E et al (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19(5):576–585PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W et al (2015) Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163(7):1585–1595PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472(7341):57–63PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Dumas M-E, Barton RH, Toye A, Cloarec O, Blancher C et al (2006) Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A 103(33):12511–12516PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Rooks MG, Garrett WS (2016) Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16(6):341–352PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Johnson CH, Dejea CM, Edler D, Hoang LT, Santidrian AF et al (2015) Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab 21(6):891–897PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Dejea CM, Wick EC, Hechenbleikner EM, White JR, Mark Welch JL et al (2014) Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Natl Acad Sci U S A 111(51):18321–18326PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118(2):229–241PubMedCrossRefGoogle Scholar
  80. 80.
    Brown SL, Riehl TE, Walker MR, Geske MJ, Doherty JM et al (2007) Myd88-dependent positioning of Ptgs2-expressing stromal cells maintains colonic epithelial proliferation during injury. J Clin Invest 117(1):258–269PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Fukata M, Chen A, Klepper A, Krishnareddy S, Vamadevan AS et al (2006) Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: Role in proliferation and apoptosis in the intestine. Gastroenterology 131(3):862–877PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Hernandez Y, Sotolongo J, Breglio K, Conduah D, Chen A et al (2010) The role of prostaglandin E2 (PGE 2) in toll-like receptor 4 (TLR4)-mediated colitis-associated neoplasia. BMC Gastroenterol 10:82PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Pull SL, Doherty JM, Mills JC, Gordon JI, Stappenbeck TS (2005) Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc Natl Acad Sci U S A 102(1):99–104PubMedCrossRefGoogle Scholar
  84. 84.
    Dheer R, Santaolalla R, Davies JM, Lang JK, Phillips MC et al (2016) Intestinal epithelial toll-like receptor 4 signaling affects epithelial function and colonic microbiota and promotes a risk for transmissible colitis. Infect Immun 84(3):798–810PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56(7):1761–1772PubMedCrossRefGoogle Scholar
  86. 86.
    Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM et al (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57(6):1470–1481PubMedCrossRefGoogle Scholar
  87. 87.
    Lassenius MI, Pietiläinen KH, Kaartinen K, Pussinen PJ, Syrjänen J et al (2011) Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care 34(8):1809–1815PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Pussinen PJ, Havulinna AS, Lehto M, Sundvall J, Salomaa V (2011) Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care 34(2):392–397PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ et al (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482(7384):179–185PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Jiang W, Wu N, Wang X, Chi Y, Zhang Y et al (2015) Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci Rep 5:8096PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Miele L, Valenza V, La Torre G, Montalto M, Cammarota G et al (2009) Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 49(6):1877–1887PubMedCrossRefGoogle Scholar
  92. 92.
    Wigg AJ, Roberts-Thomson IC, Dymock RB, McCarthy PJ, Grose RH, Cummins AG (2001) The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut 48(2):206–211PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Dapito DH, Mencin A, Gwak G-Y, Pradere J-P, Jang M-K et al (2012) Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21(4):504–516PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Ochi A, Nguyen AH, Bedrosian AS, Mushlin HM, Zarbakhsh S et al (2012) MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. J Exp Med 209(9):1671–1687PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Fukata M, Chen A, Vamadevan AS, Cohen J, Breglio K et al (2007) Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology 133(6):1869–1881PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Fukata M, Shang L, Santaolalla R, Sotolongo J, Pastorini C et al (2011) Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis. Inflamm Bowel Dis 17(7):1464–1473PubMedCrossRefGoogle Scholar
  97. 97.
    Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B et al (2012) Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491(7423):254–258PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Lee SH, Hu L-L, Gonzalez-Navajas J, Seo GS, Shen C et al (2010) ERK activation drives intestinal tumorigenesis in Apc(min/+) mice. Nat Med 16(6):665–670PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Yim HCH, Li JCB, Pong JCH, Lau ASY (2011) A role for c-Myc in regulating anti-mycobacterial responses. Proc Natl Acad Sci U S A 108(43):17749–17754PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157(1):121–141PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Vijay-Kumar M, Sanders CJ, Taylor RT, Kumar A, Aitken JD et al (2007) Deletion of TLR5 results in spontaneous colitis in mice. J Clin Invest 117(12):3909–3921PubMedPubMedCentralGoogle Scholar
  102. 102.
    Meena NK, Ahuja V, Meena K, Paul J (2015) Association of TLR5 gene polymorphisms in ulcerative colitis patients of north India and their role in cytokine homeostasis. PLoS One 10(3):e0120697PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S et al (2010) Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328(5975):228–231PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Chassaing B, Ley RE, Gewirtz AT (2014) Intestinal epithelial cell toll-like receptor 5 regulates the intestinal microbiota to prevent low-grade inflammation and metabolic syndrome in mice. Gastroenterology 147(6):1363–1377.e17PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Singh V, Yeoh BS, Carvalho F, Gewirtz AT, Vijay-Kumar M (2015) Proneness of TLR5 deficient mice to develop colitis is microbiota dependent. Gut Microbes 6(4):279–283PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Rutkowski MR, Stephen TL, Svoronos N, Allegrezza MJ, Tesone AJ et al (2015) Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell 27(1):27–40CrossRefPubMedGoogle Scholar
  107. 107.
    Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122(1):107–118PubMedCrossRefGoogle Scholar
  108. 108.
    Mazmanian SK, Round JL, Kasper DL (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453(7195):620–625PubMedCrossRefGoogle Scholar
  109. 109.
    Ochoa-Repáraz J, Mielcarz DW, Ditrio LE, Burroughs AR, Begum-Haque S et al (2010) Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression. J Immunol 185(7):4101–4108PubMedCrossRefGoogle Scholar
  110. 110.
    Round JL, Lee SM, Li J, Tran G, Jabri B et al (2011) The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332(6032):974–977PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Round JL, Mazmanian SK (2010) Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A 107(27):12204–12209PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Shen Y, Giardino Torchia ML, Lawson GW, Karp CL, Ashwell JD, Mazmanian SK (2012) Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe 12(4):509–520PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Lee J, Mo J-H, Katakura K, Alkalay I, Rucker AN et al (2006) Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat Cell Biol 8(12):1327–1336PubMedCrossRefGoogle Scholar
  114. 114.
    Obermeier F, Strauch UG, Dunger N, Grunwald N, Rath HC et al (2005) In vivo CpG DNA/toll-like receptor 9 interaction induces regulatory properties in CD4+CD62L+ T cells which prevent intestinal inflammation in the SCID transfer model of colitis. Gut 54(10):1428–1436PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Rose WA, Sakamoto K, Leifer CA (2012) TLR9 is important for protection against intestinal damage and for intestinal repair. Sci Rep 2:574PubMedCrossRefGoogle Scholar
  116. 116.
    Hong C-P, Yun CH, Lee G-W, Park A, Kim Y-M, Jang MH (2015) TLR9 regulates adipose tissue inflammation and obesity-related metabolic disorders. Obesity (Silver Spring) 23(11):2199–2206CrossRefGoogle Scholar
  117. 117.
    Caruso R, Warner N, Inohara N, Núñez G (2014) NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity 41(6):898–908PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Hold GL, Smith M, Grange C, Watt ER, El-Omar EM, Mukhopadhya I (2014) Role of the gut microbiota in inflammatory bowel disease pathogenesis: what have we learnt in the past 10 years? World J Gastroenterol 20(5):1192–1210PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Al Nabhani Z, Dietrich G, Hugot J-P, Barreau F (2017) Nod2: The intestinal gate keeper. PLoS Pathog 13(3):e1006177PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Barreau F, Meinzer U, Chareyre F, Berrebi D, Niwa-Kawakita M et al (2007) CARD15/NOD2 is required for Peyer’s patches homeostasis in mice. PLoS One 2(6):e523PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Chassaing B, Rolhion N, de Vallée A, Salim SY, Prorok-Hamon M et al (2011) Crohn disease--associated adherent-invasive E. coli bacteria target mouse and human Peyer’s patches via long polar fimbriae. J Clin Invest 121(3):966–975PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Denou E, Lolmède K, Garidou L, Pomie C, Chabo C et al (2015) Defective NOD2 peptidoglycan sensing promotes diet-induced inflammation, dysbiosis, and insulin resistance. EMBO Mol Med 7(3):259–274PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Amendola A, Butera A, Sanchez M, Strober W, Boirivant M (2014) Nod2 deficiency is associated with an increased mucosal immunoregulatory response to commensal microorganisms. Mucosal Immunol 7(2):391–404PubMedCrossRefGoogle Scholar
  124. 124.
    Barreau F, Madre C, Meinzer U, Berrebi D, Dussaillant M et al (2010) Nod2 regulates the host response towards microflora by modulating T cell function and epithelial permeability in mouse Peyer’s patches. Gut 59(2):207–217PubMedCrossRefGoogle Scholar
  125. 125.
    Watanabe T, Asano N, Murray PJ, Ozato K, Tailor P et al (2008) Muramyl dipeptide activation of nucleotide-binding oligomerization domain 2 protects mice from experimental colitis. J Clin Invest 118(2):545–559PubMedPubMedCentralGoogle Scholar
  126. 126.
    Yang Z, Fuss IJ, Watanabe T, Asano N, Davey MP et al (2007) NOD2 transgenic mice exhibit enhanced MDP-mediated down-regulation of TLR2 responses and resistance to colitis induction. Gastroenterology 133(5):1510–1521PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Couturier-Maillard A, Secher T, Rehman A, Normand S, De Arcangelis A et al (2013) NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest 123(2):700–711PubMedPubMedCentralGoogle Scholar
  128. 128.
    Möckelmann N, von Schönfels W, Buch S, von Kampen O, Sipos B et al (2009) Investigation of innate immunity genes CARD4, CARD8 and CARD15 as germline susceptibility factors for colorectal cancer. BMC Gastroenterol 9:79PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW (2013) Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 14(2):195–206PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA et al (2013) Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14(2):207–215PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M et al (2012) Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 22(2):299–306PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F et al (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22(2):292–298PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Maddocks ODK, Short AJ, Donnenberg MS, Bader S, Harrison DJ (2009) Attaching and effacing Escherichia coli downregulate DNA mismatch repair protein in vitro and are associated with colorectal adenocarcinomas in humans. PLoS One 4(5):e5517PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Martin HM, Campbell BJ, Hart CA, Mpofu C, Nayar M et al (2004) Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology 127(1):80–93PubMedCrossRefGoogle Scholar
  135. 135.
    Swidsinski A, Khilkin M, Kerjaschki D, Schreiber S, Ortner M et al (1998) Association between intraepithelial Escherichia coli and colorectal cancer. Gastroenterology 115(2):281–286PubMedCrossRefGoogle Scholar
  136. 136.
    Sun J, Kato I (2016) Gut microbiota, inflammation and colorectal cancer. Genes Dis 3(2):130–143PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Arthur JC, Perez-Chanona E, Mühlbauer M, Tomkovich S, Uronis JM et al (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338(6103):120–123PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Bonnet M, Buc E, Sauvanet P, Darcha C, Dubois D et al (2014) Colonization of the human gut by E. coli and colorectal cancer risk. Clin Cancer Res 20(4):859–867PubMedCrossRefGoogle Scholar
  139. 139.
    Buc E, Dubois D, Sauvanet P, Raisch J, Delmas J et al (2013) High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS ONE 8(2):e56964PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Cougnoux A, Dalmasso G, Martinez R, Buc E, Delmas J et al (2014) Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut 63(12):1932–1942PubMedCrossRefGoogle Scholar
  141. 141.
    Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E, Nougayrède J-P (2010) Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci U S A 107(25):11537–11542PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Nougayrède J-P, Homburg S, Taieb F, Boury M, Brzuszkiewicz E et al (2006) Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313(5788):848–851PubMedCrossRefGoogle Scholar
  143. 143.
    Vizcaino MI, Crawford JM (2015) The colibactin warhead crosslinks DNA. Nat Chem 7(5):411–417PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Wu S, Rhee K-J, Albesiano E, Rabizadeh S, Wu X et al (2009) A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 15(9):1016–1022PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Goodwin AC, Destefano Shields CE, Wu S, Huso DL, Wu X et al (2011) Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci U S A 108(37):15354–15359PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM et al (2015) The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis 60(2):208–215PubMedCrossRefGoogle Scholar
  147. 147.
    Toprak NU, Yagci A, Gulluoglu BM, Akin ML, Demirkalem P et al (2006) A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect 12(8):782–786PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Immunology and Infectious Disease, John Curtin School of Medical ResearchAustralian National UniversityCanberraAustralia
  2. 2.Department of Medicine, St George & Sutherland Clinical School, Faculty of MedicineUniversity of New South Wales, AustraliaKogarahAustralia

Personalised recommendations