Structure Determination of Membrane Peptides and Proteins by Solid-State NMR

  • Izuru KawamuraEmail author
  • Kazushi Norisada
  • Akira Naito


Solid-state nuclear magnetic resonance (NMR) spectroscopy provides useful information on the structure, topology, and orientation of peptides and proteins bound to lipid bilayers. The structure and orientation of membrane-associated peptides and proteins can be elucidated by analyzing structural constraints obtained from anisotropic chemical-shift interactions, nuclear dipolar interactions, or a combination of these interactions. Detailed structures of various peptides and proteins in their membrane-bound states can be studied by analyzing anisotropic chemical-shift interactions by, for example, chemical-shift oscillation analysis, and nuclear dipolar interactions using techniques such as polarity index slant angle wheel analysis. Magic-angle spinning (MAS) experiments coupled with cross-polarization (CP) and high-power decoupling (CP-MAS) techniques provide high-resolution 13C and 15N NMR signals for selectively or uniformly labeled membrane-bound peptides and proteins in solid-state NMR. Furthermore, homonuclear and heteronuclear dipolar interactions can be recoupled using various spin manipulation pulse sequences under MAS conditions. These experiments enable the correlation of 13C–13C and 13C–15N signals, allowing their assignment to specific amino acid residues and ultimately determination of the high-resolution structure of membrane-bound peptides and proteins.


Membrane peptide Membrane protein Chemical-shift interaction Nuclear dipolar interaction Solid-state NMR 



This work was supported by grants-in-aid for Scientific Research in an Innovative Area (16H00756 to AN and 16H00828 to IK) and by a grant-in-aid for Scientific Research (C) (15K06963 to AN) and Research (B) (15H04336 to IK) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.


  1. 1.
    Opella, S.J., Marassi, F.M.: Structure determination of membrane proteins by NMR spectroscopy. Chem. Rev. 104, 3587–3606 (2004)CrossRefGoogle Scholar
  2. 2.
    Watts, A., Straus, S.K., Grage, S.L., Kamihira, M., Lam, Y.H., Zhao, X.: Membrane protein structure determination using solid-state NMR. In: Downing, A.K. (ed.) Protein NMR. Techniques, methods in molecular biology, vol. 278, pp. 403–473. Humana Press, Totowa (2004)CrossRefGoogle Scholar
  3. 3.
    Saitô, H., Ando, I., Naito, A.: NMR constraints for determination of secondary structure. In: Solid state NMR spectroscopy for biopolymers. Principles and Applications, pp. 127–199. Springer, Berlin (2006)Google Scholar
  4. 4.
    Naito, A.: Structure elucidation of membrane-associated peptides and proteins in oriented bilayers by solid-state NMR spectroscopy. Solid State Nucl. Magn. Reson. 36, 67–76 (2009)CrossRefGoogle Scholar
  5. 5.
    Opella, S.J., Das, B.B.: Determination of the equivalence of solid-state NMR orientational constraints from magnetic and rotational alignment of the coat protein in a filamentous bacteriophage. In: Separopvic, F., Naito, A. (eds.) Advances in Biological Solid State NMR: Protein and Membrane-Active Peptides, pp. 53–70. Royal Society of Chemistry, Cambridge (2014)CrossRefGoogle Scholar
  6. 6.
    Naito, A., Kawamura, I., Javkhlantugs, N.: Recent Solid-state NMR studies of membrane-bound peptides and proteins. Annu. Rev. NMR Spectrosc. 86, 333–411 (2015)CrossRefGoogle Scholar
  7. 7.
    Toraya, S., Nishimura, K., Naito, A.: Dynamic structure of vesicle-bound melittin in a variety of lipid chain lengths by solid-state NMR. Biophys. J. 87, 3323–3335 (2004)CrossRefGoogle Scholar
  8. 8.
    Marassi, F.M., Ramamoorthy, A., Opella, S.J.: Complete resolution of the solid-state NMR spectrum of a uniformly 15N-labeled membrane protein in phospholipid bilayers. Proc. Natl. Acad. Sci. 94, 8551–8556 (1997)CrossRefGoogle Scholar
  9. 9.
    Opella, S.J.: Solid-state NMR and membrane ptoteins. J. Magn. Reson. 253, 129–137 (2015)CrossRefGoogle Scholar
  10. 10.
    Weingarth, M., Buldus, M.: Introduction to Biological Solid-State NMR: Protein and Membrane Active Peptides, pp. 1–17. Royal Society of Chemistry, Cambridge (2014)CrossRefGoogle Scholar
  11. 11.
    Ward, M.E., Brown, L.S., Ladizhansky, V.: Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: application to anabaena sensory rhodopsin. J. Magn. Reson. 253, 119–128 (2015)CrossRefGoogle Scholar
  12. 12.
    Naito, A., Nagao, T., Norisada, K., Mizuno, T., Tuzi, S., Saitô, H.: Conformation and dynamics of melittin bound to magnetically oriented lipid bilayers by solid-state 31P and 13 C NMR spectroscopy. Biophys. J. 78, 2405–2417 (2000)CrossRefGoogle Scholar
  13. 13.
    Wu, C.H., Ramamoorth, A., Opella, S.J.: High-resolution heteronuclear dipolar solid-state NMR spectroscopy. J. Magn. Reson. A109, 270–272 (1994)CrossRefGoogle Scholar
  14. 14.
    Ramamoorthy, A., Wei, Y., Lee, D.-K.: PISEMA solid-state NMR spectroscopy. Annu. Rep. NMR Spectrosc. 52, 1–52 (2004)CrossRefGoogle Scholar
  15. 15.
    Lee, D.K., Narasimhaswamy, T., Ramamoorthy, A.: PITANSEMA, a low-power PISEMA solid-state NMR experiment. Chem. Phys. Lett. 399, 359–362 (2004)CrossRefGoogle Scholar
  16. 16.
    Nishimura, K., Naito, A.: Dramatic reduction of the RF power for attenuation of sample heating in 2D-separated local field solid-state NMR spectroscopy. Chem. Phys. Lett. 402, 245–250 (2005)CrossRefGoogle Scholar
  17. 17.
    Nishimura, K., Naito, A.: Remarkable reduction of rf power by ATANSEMA and DATANSEMA separated local field in solid-state NMR spectroscopy. Chem. Phys. Lett. 419, 120–124 (2006)CrossRefGoogle Scholar
  18. 18.
    Gor’kov, P.L., Chekmenev, E.Y., Li, C., Cotton, M., Butfy, J.J., Traasch, N.J., Veglia, G., Brey, W.W.: Using low-E resonance to reduce RF heating in biological samples for static solid-state NMR up to 900 MHz. J. Magn. Reson. 185, 77–93 (2007)CrossRefGoogle Scholar
  19. 19.
    Yamamoto, K., Lee, D.K., Ramamoorthy, A.: Spectroscopy, broadband-PISEMA solid-state NMR spectroscopy. Chem. Phys. Lett. 407, 289–293 (2005)CrossRefGoogle Scholar
  20. 20.
    Marassi, F.M., Opella, S.J.: A solid-state NMR index of helical membrane protein structure and topology. J. Magn. Reson. 144, 150–155 (2000)CrossRefGoogle Scholar
  21. 21.
    Marrasi, F.M., Ma, C., Gesel, J.J., Opella, S.J.: Three-dimensional solid-state NMR spectroscopy is essential for resolution of resonances from in-plane residues in uniformly 15N-labeled helical membrane proteins in oriented lipid bilayers. J. Magn. Reson. 144, 156–161 (2000)CrossRefGoogle Scholar
  22. 22.
    Wang, J., Denny, J., Tian, C., Kim, S., Mo, Y., Kovacs, F., Song, Z., Nishimura, K., Gan, Z., Fu, R., Quine, J.R., Cross, T.A.: Imaging membrane protein helical wheels. J. Magn. Reson. 144, 162–167 (2000)CrossRefGoogle Scholar
  23. 23.
    Gullion, T., Schaefer, J.: Rotational-echo double-resonance. J. Magn. Reson. 81, 196–200 (1989)Google Scholar
  24. 24.
    Naito, A., Nishimura, K., Kimura, S., Tuzi, S., Aida, M., Yasuoka, N., Saitô, H.: Determination of the three-dimensional structure of a new crystalline form of N-acetyl-Pro-Gly-Phe as revealed by 13C REDOR, X-ray diffraction, and molecular dynamics calculation. J. Phys. Chem. 100, 14995–15004 (1996)CrossRefGoogle Scholar
  25. 25.
    Naito, A., Nishimura, K., Tuzi, S., Saitô, H.: Inter- and intra-molecular contributions of neighboring dipolar pairs to the precise determination of interatomic distances in a simple [13C, 15N]-peptide by 13C, 15N-REDOR NMR spectroscopy. Chem. Phys. Lett. 229, 506–511 (1994)Google Scholar
  26. 26.
    Jaroniec, C.P., Tounge, B.T., Rienstra, C.M., Herzfeld, J., Griffin, R.G.: Recoupling of heteronuclear dipolar interactions with rotational-echo double-resonance at high magic-angle spinning frequencies. J. Magn. Reson. 146, 132–139 (2000)CrossRefGoogle Scholar
  27. 27.
    Gullion, T., Schaefer, J.: Elimination of resonance offset effects in rotational-echo double resonance NMR. J. Magn. Reson. 92, 439–442 (1991)Google Scholar
  28. 28.
    Pan, Y., Gullion, T., Schaefer, J.: Determination of C-N internuclear distances by rotational-echo double-resonance NMR of solids. J. Magn. Reson. 90, 330–340 (1990)Google Scholar
  29. 29.
    Garbow, J.R., McWherter, C.A.: Determination of the molecular conformation of melanostatin using 13C, 15N-REDOR NMR spectroscopy. J. Am. Chem. Soc. 115, 238–244 (1993)CrossRefGoogle Scholar
  30. 30.
    Suwelack, D., Rothwell, W.P., Waugh, J.S.: Slow molecular motion detecting in the NMR spectra of rotating solids. J. Chem. Phys. 74, 2559–2569 (1980)CrossRefGoogle Scholar
  31. 31.
    Rothwell, W.P., Waugh, J.S.: Transverse relaxation of dipolar coupled spin systems under rf irradiation. J. Chem. Phys. 74, 2721–2732 (1981)CrossRefGoogle Scholar
  32. 32.
    Naito, A., Fukutani, A., Uitdehaag, M., Tuzi, S., Saitô, H.: Backbone dynamics of polycrystalline peptides studied by measurements of 15N NMR lineshapes and 13C transverse relaxation times. J. Mol. Struct. 441, 231–241 (1998)CrossRefGoogle Scholar
  33. 33.
    Kamihira, M., Naito, A., Nishimura, K., Tuzi, S., Saitô, H.: A high-resolution solid-state 13C and 15N NMR study on crystalline Leu- and Met-enkephalins: Distinction of polymorphs, backbone dynamics and local conformational rearrangements induced by dehydration or freezing of motion of bound solvent molecules. J. Phys. Chem. B 102, 2826–2834 (1998)CrossRefGoogle Scholar
  34. 34.
    Peersen, O.B., Groesbeek, M., Aimoto, S., Smith, S.O.: Analysis of rotational resonance magnetization exchange curves from crystalline peptides. J. Am. Chem. Soc. 117, 7228–7237 (1995)CrossRefGoogle Scholar
  35. 35.
    Andrew, E.R.: The narrowing of NMR spectra of solids by high-speed specimen rotation and resolution of chemical shift and spin multiplet structure for solids. Prog. Nucl. Magn. Reson. Spectrosc. 8, 1–39 (1971)CrossRefGoogle Scholar
  36. 36.
    Hartmann, S.R., Hahn, E.L.: Nuclear double resonance in the rotating frame. Phys. Rev. 128, 2042–2053 (1962)CrossRefGoogle Scholar
  37. 37.
    Pines, A., Gibby, M.G., Waugh, J.S.: Proton-enhanced NMR of dilute spins in solids. J. Chem. Phys. 59, 569–590 (1973)CrossRefGoogle Scholar
  38. 38.
    Schaefer, J., Stejeskal, E.O.: Carbon-13 nuclear magnetic resonance of polymers spinning at magic angle. J. Am. Chem. Soc. 98, 1031–1032 (1976)CrossRefGoogle Scholar
  39. 39.
    Baldus, M., Petokova, A.T., Herzfeld, J., Griffin, R.G.: Cross polarization in the tilted frame assignment and spectral simplification in heteronuclear spin system. Mol. Phys. 95, 1197–1207 (1998)CrossRefGoogle Scholar
  40. 40.
    Lewandowski, J.R., Paep, G.D., Griffin, R.G.: Proton assisted insensitive nuclei cross polarization. J. Am. Chem. Soc. 129, 728–729 (2007)CrossRefGoogle Scholar
  41. 41.
    Paep, G.D., Lewandowski, J.R., Loquet, A., Bockmann, A., Griffin, R.G.: Proton assisted recoupling and protein structure determination. J. Chem. Phys. 129, 245101 (2008)CrossRefGoogle Scholar
  42. 42.
    Grommek, A., Meier, B.H., Ernst, M.: Distance information from proton-driven spin diffusion under MAS. Chem. Phys. Lett. 427, 631–637 (2006)CrossRefGoogle Scholar
  43. 43.
    Takegoshi, K., Nakamura, S., Terao, T.: 13C–1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem. Phys. Lett. 344, 631–637 (2001)CrossRefGoogle Scholar
  44. 44.
    Takegoshi, K., Nakamura, S., Terao, T.: 13C–1H dipolar-driven 13C–13C recoupling without 13C rf irradiation in nuclear magnetic resonance of rotating solids. J. Chem. Phys. 118, 2325–2341 (2003)CrossRefGoogle Scholar
  45. 45.
    Weingarth, M., Demaco, D.E., Bodenhausen, G., Tekely, P.: Improved magnetization transfer in solid-state NMR with fast magic angle spinning. Chem. Phys. Lett. 469, 342–348 (2009)CrossRefGoogle Scholar
  46. 46.
    Scholz, I., Huber, M., Manolikas, T., Meier, B.H., Ernst, M.: MIRROR recoupling and its application to spin diffusion under fast magic-angle spinning. Chem. Phys. Lett. 460, 278–283 (2008)CrossRefGoogle Scholar
  47. 47.
    Weigarth, M., Masuda, Y., Takegoshi, K., Bodenhausen, G., Tekely, P.: Sensitive 13C–13C correlation spectra of amyloid fibrils at very high spinning frequencies and magnetic fields. J. Biomol. NMR 50, 129–136 (2011)CrossRefGoogle Scholar
  48. 48.
    Egawa, A., Fujiwara, T., Mizoguchi, T., Kakitani, Y., Koyama, Y., Akutsu, H.: Structure of the light-harvesting bacteriochlorophyll c assembly in chlorosomes from Chlorobium limicola determined by solid-state NMR. Proc. Natl. Acad. Sci. 104, 790–795 (2007)CrossRefGoogle Scholar
  49. 49.
    Dumez, J.L., Emsley, L.: A master-equation approach to the description of proton-driven spin diffusion from crystal geometry using simulated zero-quantum lineshapes. Phys. Chem. Chem. Phys. 13, 7363–7370 (2011)CrossRefGoogle Scholar
  50. 50.
    Kubo, A., McDowell, C.A.: Spectral spin diffusion in polycrystalline solids under magic angle spinning. Chem. Soc. Faraday Trans. I 84, 3713–3730 (1988)CrossRefGoogle Scholar
  51. 51.
    Kubo, A., McDowell, C.A.: 31P spectral spin diffusion in crystalline solids. J. Chem. Phys. 89, 63–70 (1988)CrossRefGoogle Scholar
  52. 52.
    Grommek, A., Meier, B.H., Ernst, M.: Distance information from proton-driven spin diffusion under MAS. Chem. Phys. Lett. 427, 404–409 (2006)CrossRefGoogle Scholar
  53. 53.
    Toraya, S., Nagao, T., Norisada, K., Tuzi, S., Saitô, H., Izumi, S., Naito, A.: Morphological behavior of lipid bilayers induced by melittin near the phase transition temperature. Biophys. J. 89, 3214–3222 (2005)CrossRefGoogle Scholar
  54. 54.
    Norisada, K., Javkhlantugs, N., Mishima, D., Kawamura, I., Saitô, H., Ueda, K., Naito, A.: Dynamic structure and orientation of melittin bound to acidic lipid bilayers, as revealed by solid-state NMR and molecular dynamics simulation. J. Phys. Chem. B 121, 1802–1811 (2017)CrossRefGoogle Scholar
  55. 55.
    Uezono, T., Toraya, S., Obata, M., Nishimura, K., Tuzi, S., Saitô, H., Naito, A.: Structure and orientation of dynorphin bound to lipid bilayers by 13C solid-state NMR. J. Mol. Struct. 749, 13–19 (2005)CrossRefGoogle Scholar
  56. 56.
    Toraya, S., Javkhlantugs, N., Mishima, D., Nishimura, K., Ueda, K., Naito, A.: Dynamic structure of bombolitin II bound to lipid bilayers as revealed by solid-state NMR and molecular-dynamics simulation. Biophys. J. 99, 3282–3289 (2010)CrossRefGoogle Scholar
  57. 57.
    Tsutsumi, A., Javkhlantugs, N., Kira, A., Umeyama, M., Kawamura, I., Nishimura, K., Ueda, K., Naito, A.: Structure and orientation of bovine lactroferrampin in the mimetic bacterial membrane as revealed by solid-state NMR and molecular dynamic simulation. Biophys. J. 103, 1735–1743 (2012)CrossRefGoogle Scholar
  58. 58.
    Kira, A., Javkhlantugs, N., Miyamori, T., Sasaki, Y., Eguchi, M., Kawamura, I., Ueda, K., Naito, A.: Interaction of extracellular loop II of k-opioid receptor (196–228) with opioid peptide dynorphin in membrane environments as revealed by solid state nuclear magnetic resonance, quartz crystal microbalance and molecular dynamics simulation. J. Phys. Chem. B 2014(118), 9604–9612 (2014)CrossRefGoogle Scholar
  59. 59.
    Nagao, T., Mishima, D., Javkhlantugs, N., Wang, J., Ishioka, D., Yokota, K., Norisada, K., Kawamura, I., Ueda, K., Naito, A.: Structure and orientation of antibiotic peptide alamethicin in phospholipid bilayers as revealed by chemical shift oscillation analysis of solid state nuclear magnetic resonance and molecular dynamics simulation. Biochim. Biophys. Acta 2015(1848), 2789–2798 (2015)CrossRefGoogle Scholar
  60. 60.
    Habermann, E., Jentsc, J.: Sequence analysis of melittin from tryptic and peptic degradation and products. Hoppe-Seyler’s Z. Phys. Chem. 348, 37–50 (1967)CrossRefGoogle Scholar
  61. 61.
    Sessa, G., Free, J.H., Colacicco, G., Weissmann, G.: Interaction of a lytic polypeptide, melittin, with lipid membrane systems. J. Biol. Chem. 244, 3575–3582 (1969)Google Scholar
  62. 62.
    Tosteson, M.T., Tosteson, D.C.: The sting melittin forms channels in lipid bilayers. Biophys. J. 36, 109–116 (1981)CrossRefGoogle Scholar
  63. 63.
    Dempsey, C.E.: The action of melittin on membrane. Biochim. Biophys. Acta 1031, 143–161 (1990)CrossRefGoogle Scholar
  64. 64.
    Dufourcq, J., Faucon, J.-F., Fourche, G., Dasseux, J.L., Le Maire, M., Gulik-Krywicki, T.: Morphological change of phosphatidylcholine bilayers induced by melittin: vesicularization, fusion, discoidal particles. Biochim. Biophys. Acta 859, 33–48 (1986)CrossRefGoogle Scholar
  65. 65.
    Saitô, H.: Conformation-dependent 13C chemical shifts: a new means of conformation characterization as obtained by high-resolution solid-state 13C NMR. Magn. Reson. Chem. 24, 835–852 (1986)CrossRefGoogle Scholar
  66. 66.
    Saitô, H., Ando, I.: High-resolution solid-state NMR studies of synthetic and biological macromolecules. Annu. Rep. NMR Spectrosc. 21, 209–290 (1989)CrossRefGoogle Scholar
  67. 67.
    Naito, A., Saitô, H.: Limit of accuracy of internuclear distances measured by REDOR. Encycl. Nucl. Magn. Reson. 9, 191–283 (2002)Google Scholar
  68. 68.
    Meyer, C.E., Reusser, F.: A polypeptide antibacterial agent isolated from Trichoderma viride. Experientia 23, 85–86 (1967)CrossRefGoogle Scholar
  69. 69.
    Balasubramanian, T.M., Kendrick, N.C.E., Taylor, M., Marshall, G.R., Hall, J.E., Vodyanoy, J., Reusser, F.: Synthesis and characterization of the major component of alamethicin. J. Am. Chem. Soc. 103, 6127–6132 (1981)CrossRefGoogle Scholar
  70. 70.
    Vedovato, N., Baldhini, C., Toniolo, C., Rispoli, G.: Pore-forming properties of alamethicin F50/5 inserted in a biological membrane. Chem. Biodivers. 4, 1338–1346 (2007)CrossRefGoogle Scholar
  71. 71.
    Mueller, P., Rudin, D.O.: Action potentials induced in biomolecular lipid membranes. Nature 217, 713–719 (1068)CrossRefGoogle Scholar
  72. 72.
    Dave, P.C., Billington, E., Pan, Y.-L., Straus, S.K.: Interaction of alamethicin with ether-linked phospholipid bilayers: oriented circular dichroism, 31P solid-state NMR, and differential scanning calorimetry studies. Biophys. J. 89, 2434–2442 (2005)CrossRefGoogle Scholar
  73. 73.
    Tieleman, D.P., Berendsen, H.J.C., Sanson, M.S.P.: Voltage-dependent insertion of alamethicin at phospholipid/water and octane/water interfaces. Biophys. J. 80, 331–346 (2001)CrossRefGoogle Scholar
  74. 74.
    Fox Jr., R.O., Richards, F.M.: A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-Å resolution. Nature 300, 325–330 (1982)CrossRefGoogle Scholar
  75. 75.
    Pan, P., Tristram-Nagle, S., Nagle, J.F.: Alamethicin aggregation in lipid membranes. J. Membr. Biol. 231, 11–27 (2009)CrossRefGoogle Scholar
  76. 76.
    Sansom, M.S.: Alamethicin and related peptaibols—model ion channels. Eur. Biophys. J. 22, 105–124 (1993)CrossRefGoogle Scholar
  77. 77.
    Saitô, H., Tabeta, R., Formaggio, F., Crisma, M., Toniolo, C.: High-resolution solid-state 13C-NMR of peptides: A study of chain-length dependence for 310-helix formation. Biopolymers 27, 1607–1617 (1988)CrossRefGoogle Scholar
  78. 78.
    Nagao, T., Naito, A., Tuzi, S., Saitô, H.: Conformation and orientation of biologically active peptide alamethicin in phospholipid bilayer by high-resolution solid state NMR spectroscopy. Pept. Sci. 1988, 341–344 (1988)Google Scholar
  79. 79.
    Bak, M., Bywater, R.P., Hohwy, M., Thomsen, J.K., Adelhorst, K., Jakobsen, H.J., Søronsen, O.W., Nielsen, N.C.: Conformation of alamethicin in oriented phospholipid bilayers determined by 15N solid-state nuclear magnetic resonance. Biophys. J. 81, 1684–1698 (2001)CrossRefGoogle Scholar
  80. 80.
    Bertelsen, K., Paaske, B., Thøgersen, L., Tajkhorshid, E., Schiøtt, B., Skrydstrup, T., Nielsen, N.C., Vosegaard, T.: Residue-specific information about the dynamics of antimicrobial peptides from 1H–15N and 2H solid-state NMR spectroscopy. J. Am. Chem. Soc. 131, 18335–18342 (2009)CrossRefGoogle Scholar
  81. 81.
    Bechinger, B., Skladnev, D.A., Ogrel, A., Li, X., Rogozhkina, E.V., Ovchinnikova, T.V., O’Neil, J.D.J., Raap, J.: 15N and 31P solid-state NMR investigations on the orientation of Zervamicin II and alamethicin in phosphatidylcholine membranes. Biochemistry 40, 9428–9437 (2001)CrossRefGoogle Scholar
  82. 82.
    Salnikov, E.S., Friedrich, H., Li, X., Bertani, P., Reissmann, S., Hertweck, C., O’Neil, J.D.J., Raap, J., Bechinger, B.: Structure and alignment of the membrane-associated peptaibols ampullosporin A and alamethicin by oriented 15N and 31P solid-state NMR spectroscopy. Biophys. J. 96, 86–100 (2009)CrossRefGoogle Scholar
  83. 83.
    van der Kraan, M.I.A., Groenink, J., Nazmi, K., Veeman, E.C.I., Bolscher, J.G.M., Amerongen, A.V.N.: Lactoferrampin: A novel antimicrobial peptide in the N1-domain of bovine lactoferrin. Peptides 25, 177–183 (2004)CrossRefGoogle Scholar
  84. 84.
    van der Kraan, M.I.A., van Marle, J., Nazmi, K., Groenink, J., van’t Hof, W., Veerman, E.C.I., Bolscher, J.G.M., Amerongen, A.V.N.: Ultrastructural effects of antimicrobial peptides from bovine lactoferrin on the membranes of Candida albicans and Escherichia coli. Peptides 26, 1537–1542 (2005)CrossRefGoogle Scholar
  85. 85.
    van der Kraan, M.I.A., Nazmi, K., Teeken, A., Groenink, J., van’t Hof, W., Veeman, E.C.I., Bolscher, J.M.G., Amerongen, A.V.N.: Lactoferrampin, an antimicrobial peptide of bovine lactoferrin, exerts its candidacidal activity by a cluster of positively charged residues at the C-terminus in combination with a helix-facilitating N-terminal part. Biol. Chem. 386, 137–142 (2005)Google Scholar
  86. 86.
    Haney, E.F., Lau, F., Vogel, H.J.: Solution structure and model membrane interactions of lactoferrampin, an antimicrobial peptide derived from bovine lactoferrin. Biochim. Biophys. Acta 1768, 2355–2364 (2007)CrossRefGoogle Scholar
  87. 87.
    Jenssen, H., Hamill, P., Hancock, R.E.W.: Peptide antimicrobial agents. Clin. Microbiol. Rev. 19, 491–511 (2006)CrossRefGoogle Scholar
  88. 88.
    Matsuzaki, K., Murase, O., Fujii, N., Miyajima, K.: An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35, 11361–11368 (1996)CrossRefGoogle Scholar
  89. 89.
    Katherine, A., Wildman, H., Lee, D.-K., Ramamoorthy, A.: Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry 42, 6545–6558 (2003)CrossRefGoogle Scholar
  90. 90.
    Steve, K.H., Ludtke, L., Worcester, D.L., Huang, H.W.: Neutron scattering in the plane of membranes: structure of alamethicin pores. Biophys. J. 1996(70), 2659–2666 (1996)Google Scholar
  91. 91.
    Pouny, Y., Rapaport, D., Mor, A., Nicolas, P., Shai, Y.: Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry 31, 12416–12423 (1992)CrossRefGoogle Scholar
  92. 92.
    Umeyama, M., Kira, A., Nishimura, K., Naito, A.: Interaction of bovine lactoferricin with acidic phospholipid bilayers and its antimicrobial activity as studied by solid-state NMR. Biochim. Biophys. Acta 1758, 1523–1528 (2006)CrossRefGoogle Scholar
  93. 93.
    Park, S.H., Das, B.B., Casagrande, F., Tian, F.Y., Nothnagel, H.J., Chu, M., Kiefer, H., Maier, K., De Angelis, A.A., Marassi, F.M., Opella, S.J.: Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491, 779–783 (2012)CrossRefGoogle Scholar
  94. 94.
    Shahid, S.A., Bardiaux, B., Franks, W.T., Krabben, L., Habeck, M., van Rossum, B.-J., Linke, D.: Membrane-protein structure determination by solid-state NMR spectroscopy of microcrystals. Nat. Methods 9, 1212–1217 (2012)CrossRefGoogle Scholar
  95. 95.
    Wang, S., Munro, R.A., Shi, L., Kawamura, I., Okitsu, T., Wada, A., Kim, S.-Y., Jung, K.-H., Brown, L.S., Ladizhansky, V.: Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein. Nat. Methods 10, 1007–1012 (2013)CrossRefGoogle Scholar
  96. 96.
    Tang, M., Nesbill, A.E., Sperling, L.J., Berthold, D.A., Schwieters, C.D., Gennis, R.B., Rienstra, C.M.: Structure of the disulfide bond generating membrane protein DsbB in the lipid bilayer. J. Mol. Biol. 425, 1670–1682 (2013)CrossRefGoogle Scholar
  97. 97.
    Traaseth, N.J., Shi, L., Verardi, R., Mullen, D.G., Barany, G., Veglia, G.: Structure and topology of monomeric phospholamban in lipid membranes determined by a hybrid solution and solid-state NMR approach. Proc. Natl. Acad. Sci. USA 106, 10165–10170 (2009)CrossRefGoogle Scholar
  98. 98.
    Suter, D., Ernst, R.R.: Spin diffusion in resolved solid-state NMR spectra. Phys. Rev. 32, 5608–5627 (1985)CrossRefGoogle Scholar
  99. 99.
    Castellani, F., van Rossum, B., Diehl, A., Schubert, M., Rehbein, K., Oschkinat, H.: Structure of a protein determination by solid-state magic-angle-spinning NMR spectroscopy. Nature 420, 98–102 (2002)CrossRefGoogle Scholar
  100. 100.
    Crocker, E., Patel, A.B., Eilers, M., Jayaraman, S., Getmanova, E., Reeves, P.J., Ziliox, M., Khorana, H.G., Sheves, M., Smith, S.O.: Dipolar assisted rotational resonance NMR of tryptophan and tyrosine in rhodopsin. J. Biomol. NMR 29, 11–20 (2004)CrossRefGoogle Scholar
  101. 101.
    Marulanda, D., Tasayco, M.L., Cataldi, M., Arriaran, V., Polenova, Y.: Resonance assignments and secondary structure analysis of E. coli thioredoxin by magic spinning solid-state NMR spectroscopy. J. Phys. Chem. B 109, 18135–18145 (2005)CrossRefGoogle Scholar
  102. 102.
    Eilers, M., Goncalves, J.A., Ahuja, S., Kirkup, C., Hirshfeld, A., Simmerling, C., Reeves, P.J., Sheves, M., Smith, S.O.: Structural transitions of transmembrane helix 6 in the formation of metarhodopsin I. J. Phys. Chem. B 116, 10477–10489 (2012)CrossRefGoogle Scholar
  103. 103.
    Kimata, N., Pope, A., Eilers, M., Opefi, C.A., Ziliox, M., Hirshfeld, A., Zaitseva, E., Vogel, R., Sheves, M., Reeves, P.J., Smith, S.O.: Retinal orientation and interactions in rhodopsin reveal a two-stage trigger mechanism for activation. Nat. Commun. 7, 12683 (2016)CrossRefGoogle Scholar
  104. 104.
    Kato, H.E., Inoue, K., Abe-Yoshizumi, R., Kato, Y., Ono, H., Konno, M., Hososhima, S., Ishizuka, T., Hoque, M.R., Kunitomo, H., Ito, J., Yoshizawa, S., Yamashita, K., Takemoto, M., Nishizawa, T., Taniguchi, R., Kogure, K., Maturana, A.D., Iino, Y., Yawo, H., Ishitani, R., Kandori, H., Nureki, O.: Structural basis for Na+ transport mechanism by a light-driven Na+ pump. Nature 521, 48–53 (2015)CrossRefGoogle Scholar
  105. 105.
    Shigeta, A., Ito, S., Inoue, K., Okitsu, T., Wada, A., Kandori, K., Kawamura, I.: Solid-state nuclear magnetic resonance structural study of the retinal-binding pocket in sodium ion pump rhodopsin. Biochemistry 56, 543–550 (2017)CrossRefGoogle Scholar
  106. 106.
    Lange, A., Giller, K., Hornig, S., Martin-Eauclaire, M.-F., Pongs, O., Becker, S., Baldus, M.: Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 440, 959–962 (2006)CrossRefGoogle Scholar
  107. 107.
    Emami, S., Fan, Y., Munro, R., Ladizhansky, V., Brown, L.S.: Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra. J. Biomol. NMR 55, 147–155 (2013)CrossRefGoogle Scholar
  108. 108.
    Yang, J., Aslimovska, L., Glaubitz, C.: Molecular dynamics of proteorhodopsin in lipid bilayers by solid-state NMR. J. Am. Chem. Soc. 133, 4874–4881 (2011)CrossRefGoogle Scholar
  109. 109.
    Shi, L., Ahmed, M.A.M., Zhang, W., Whited, G., Brown, L.S., Ladizhansky, V.: Three-dimensional solid-state NMR study of a seven-helical integral membrane proton pump-structure insights. J. Mol. Biol. 386, 1078–1093 (2009)CrossRefGoogle Scholar
  110. 110.
    Etzkom, M., Seidel, K., Li, L., Martell, S., Geyer, M., Engelhard, M., Baldus, M.: Complex formation and light activation in membrane-embedded sensory rhodopsin II as seen by solid-state NMR spectroscopy. Structure 18, 293–300 (2010)CrossRefGoogle Scholar
  111. 111.
    Shen, Y., Delaglio, F., Cornilescua, G., Bax, Ad: TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44, 213–223 (2009)CrossRefGoogle Scholar
  112. 112.
    Jung, K.-H., Trivedi, V.D., Spudich, J.L: Demonstration of a sensory rhodopsin in eubacteria. Mol. Microbiol. 47, 1513–1522 (2003)Google Scholar
  113. 113.
    Shi, L., Kawamura, I., Jung, K.-H., Brown, L.S., Ladizhansky, V.: Conformation of a seven-helical transmembrane photosensor in the lipid environment. Angew. Chem. Int. Ed. 50, 1302–1305 (2011)CrossRefGoogle Scholar
  114. 114.
    Vogeley, L., Sineshchekov, O.A., Trivedi, V.D., Sasaki, J., Spudich, J.L., Luecke, H.: Anabaena sensory rhodopsin: a photochromic color sensor at 2.0 Å. Science 306, 1390–1393 (2004)CrossRefGoogle Scholar
  115. 115.
    Wang, S., Shi, L., Okitsu, T., Wada, A., Brown, L.S., Ladizhansky, V.: Solid-state NMR 13C and 15N resonance assignments of a seven-transmembrane helical protein Anabaena Sensory Rhodopsin. Biomol. NMR Assign 7, 253–256 (2013)CrossRefGoogle Scholar
  116. 116.
    Wang, S., Shi, L., Kawamura, I., Brown, L.S., Ladizhansky, V.: Site-specific solid-state NMR detection of hydrogen-deuterium exchange reveals conformational changes in a 7-helical transmembrane protein. Biophys. J. 101, L23–L25 (2011)CrossRefGoogle Scholar
  117. 117.
    Peng, X., Libich, D., Janik, R., Harauz, G., Ladizhansky, V.: Dipolar chemical shift correlation spectroscopy for homonuclear carbon distance measurements in proteins in the solid state: application to structure determination and refinement. J. Am. Chem. Soc. 130, 359–369 (2007)CrossRefGoogle Scholar
  118. 118.
    Lange, A., Luca, S., Baldus, M.: Structure constraints from protein-mediated rare-spin correlation spectroscopy in rotating solids. J. Am. Chem. Soc. 124, 9704–9705 (2002)CrossRefGoogle Scholar
  119. 119.
    Wang, S., Munro, R.A., Kim, S.Y., Jung, K.-H., Brown, L.S., Ladizhansky, V.: Paramagnetic relaxation enhancement reveals oligomerization interface of a membrane protein. J. Am. Chem. Soc. 134, 16995–16998 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Faculty of EngineeringYokohama National UniversityYokohamaJapan
  2. 2.Graduate School of EngineeringYokohama National UniversityYokohamaJapan

Personalised recommendations