Advertisement

Analytics in Authentic Learning

  • Vivekanandan Suresh KumarEmail author
  • Kinshuk
  • Colin Pinnell
  • Geetha Paulmani
Chapter
Part of the Lecture Notes in Educational Technology book series (LNET)

Abstract

Learning is a marked change in the conceptual representation of the world, in naturally intelligent entities, such as humans, as well as in artificially intelligent entities. Analytics aims at the generation of situational awareness, specifically, moments of insight that effect such a marked change and the enablers of the change. In that, Learning Analytics is the study of detection, analysis, and generation of moments of insights about learning experiences of naturally or artificially intelligent entities. It enriches learning experiences as a measurable consequence of these moments of insights. In infusing authenticity to learning experiences, this chapter discusses abstraction-oriented pedagogy at one end of a continuum and reality-oriented pedagogy at the other end and offers a characterization of this continuum.

Keywords

Learning Analytics Pedagogy Authentic learning Abstraction-oriented pedagogy Reality-based pedagogy 

Notes

Acknowledgements

This research is funded by Professor Kumar’s NSERC Discovery grants, funded by the Federal Government of Canada, and Professor Kinshuk’s NSERC/CNRL/Xerox/McGraw Hill Research Chair for Adaptivity and Personalization in Informatics, funded by the Federal Government of Canada, Provincial Government of Alberta, Canada, and national and international industries.

References

  1. Agarwal, P., Shroff, G., & Malhotra, P. (2013). Approximate Incremental Big-Data Harmonization. In 2013 IEEE International Congress on Big Data (pp. 118–125).Google Scholar
  2. Almosallam, E. A., & Ouertani, H. C. (2014). Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013). In T. Herawan, M. M. Deris & J. Abawajy (Eds.), (pp. 721–730). Singapore: Springer ISBN: 978-981-4585-18-7, Retrieved from http://dx.doi.org/10.1007/978-981-4585-18-7_81.
  3. Arnold, K. E. & Pistilli, M. D. (2012). Course signals at purdue: using Learning Analytics to increase student success. In Proceedings of the 2nd International Conference on Learning Analytics and Knowledge (pp. 267–270). ACM. ISBN: 978-1-4503-1111-3, Retrieved from http://doi.acm.org/10.1145/2330601.2330666.
  4. Bader-Natal, A., & Lotze, T. (2011). Evolving a Learning Analytics platform. In Proceedings of the 1st International Conference on Learning Analytics and Knowledge (pp. 180–185). ACM. ISBN: 978-1-4503-0944-8, Retrieved from http://doi.acm.org/10.1145/2090116.2090146.
  5. Barber, R., & Sharkey, M. (2012). Course correction: using analytics to predict course success. In Proceedings of the 2nd International Conference on Learning Analytics and Knowledge (pp. 259–262). ACM. ISBN: 978-1-4503-1111-3, Retrieved from http://doi.acm.org/10.1145/2330601.2330664.
  6. Benzaken, V., Castagna, G., Nguyen, K. & Siméon, J. (2013). Static and dynamic semantics of NoSQL languages. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (pp. 101–114). ACM. ISBN: 978-1-4503-1832-7, Retrieved from http://doi.acm.org/10.1145/2429069.2429083.
  7. Blikstein, P. (2013). Multimodal Learning Analytics. In Proceedings of the Third International Conference on Learning Analytics and Knowledge (pp. 102–106). ACM. ISBN: 978-1-4503-1785-6, Retrieved from http://doi.acm.org/10.1145/2460296.2460316.
  8. Chatti, M. A., Dyckhoff, A. L., Schroeder, U., & Thüs, H. (2012). A reference model for Learning Analytics. International Journal of Technology Enhanced Learning 4(5–6), 318-331. (doi: 10.1504/IJTEL.2012.051815.) Retrieved from http://www.inderscienceonline.com/doi/abs/10.1504/IJTEL.2012.051815.
  9. Crawford, K., & Dana, B. (2011). Six provocations for big data. A Decade in Internet Time: Symposium on the Dynamics of the Internet and Society.Google Scholar
  10. Cuzzocrea, A., & Simitsis, A. (2012). Searching semantic data warehouses: Models, issues, architectures. In Proceedings of the 2nd International Workshop on Semantic Search over the Web (pp. 6:1–6:5). ACM. ISBN: 978-1-4503-2301-7, Retrieved from http://doi.acm.org/10.1145/2494068.2494074.
  11. del Blanco, Á., Serrano, Á., Freire, M., Martínez-Ortiz, I. & Fernández-Manjón, B. (2013). E-Learning standards and Learning Analytics. can data collection be improved by using standard data models? In Global Engineering Education Conference (EDUCON), 2013 IEEE (pp. 1255–1261).Google Scholar
  12. Dobre, C., & Xhafa, F. (2013). Parallel programming paradigms and frameworks in big data era. International Journal of Parallel Programming 42(5), 710–738. (Doi: 10.1007/s10766-013-0272-7.) Retrieved from http://dx.doi.org/10.1007/s10766-013-0272-7.
  13. Ferguson, R., & Shum, S. B. (2012). Social Learning Analytics: five approaches. In Proceedings of the 2Nd International Conference on Learning Analytics and Knowledge (pp. 23–33). ACM. ISBN: 978-1-4503-1111-3, Retrieved from http://doi.acm.org/10.1145/2330601.2330616.
  14. Jensen, M. (2013). Challenges of Privacy Protection in Big Data Analytics. In 2013 IEEE International Congress on Big Data (pp. 235–238).Google Scholar
  15. Miller, J. A., Baramidze, G. T., Sheth, A. P. & Fishwick, P. A. (2004). Investigating ontologies for simulation modeling. In Simulation Symposium, 2004. Proceedings. 37th Annual (pp. 55–63).Google Scholar
  16. Prinsloo, P. & Slade, S. (2015). Student privacy self-management: Implications for Learning Analytics. In Proceedings of the Fifth International Conference on Learning Analytics and Knowledge (pp. 83–92). ACM. ISBN: 978-1-4503-3417-4, Retrieved from http://doi.acm.org/10.1145/2723576.2723585.
  17. Teplovs, C., Fujita, N., & Vatrapu, R. (2011). Generating predictive models of learner community dynamics. In Proceedings of the 1st International Conference on Learning Analytics and Knowledge (pp. 147–152). ACM. ISBN: 978-1-4503-0944-8, Retrieved from http://doi.acm.org/10.1145/2090116.2090139.
  18. van Harmelen, M. (2006). Personal learning environments. In Sixth IEEE International Conference on Advanced Learning Technologies (ICALT’06) (pp. 815–816).Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Vivekanandan Suresh Kumar
    • 1
    Email author
  • Kinshuk
    • 4
  • Colin Pinnell
    • 1
    • 2
  • Geetha Paulmani
    • 3
  1. 1.Athabasca UniversityEdmontonCanada
  2. 2.Stony PlainCanada
  3. 3.University of Eastern FinlandChennaiIndia
  4. 4.University of North TexasDentonUSA

Personalised recommendations