Advertisement

Informatics for Precision Medicine and Healthcare

  • Jiajia Chen
  • Yuxin Lin
  • Bairong ShenEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1005)

Abstract

The past decade has witnessed great advances in biomedical informatics. Biomedical informatics is an emerging field of healthcare that aims to translate the laboratory observation into clinical practice. Smart healthcare has also developed rapidly with ubiquitous sensor and communication technologies. It is able to capture the online patient-centric phenotypic variables, thus providing a rich information base for translational biomedical informatics. Biomedical informatics and smart healthcare represent two interrelated disciplines. On one hand, biomedical informatics translates the bench discoveries into bedside, and, on the other hand, it is reciprocally informed by clinical data generated from smart healthcare. In this chapter, we will introduce the major strategies and challenges in the application of biomedical informatics technology in precision medicine and healthcare. We highlight how the informatics technology will promote the precision medicine and therefore promise the improvement of healthcare.

Keywords

Healthcare Informatics Precision medicine Sensor 

Notes

Acknowledgement

This work is supported by the National Natural Science Foundation of China (Grant No. 31670851, 31470821, 91530320, 31400712), as well as the National Key Research and Development Program of China (No. 2016YFC1306605).

References

  1. 1.
    Terry SF. Obama’s precision medicine initiative. Genet Test Mol Biomarkers. 2015;19(3):113–4.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Porche DJ. Precision medicine initiative. Am J Mens Health. 2015;9(3):177.CrossRefPubMedGoogle Scholar
  3. 3.
    Hood L, Friend SH. Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol. 2011;8(3):184–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Bos L, Marsh A, Carroll D, Gupta S, Rees M. Patient 2.0 empowerment. Libr Inf Updat. 2003;97(4):164–8.Google Scholar
  5. 5.
    Kuhn KA, Knoll A, Mewes HW, Schwaiger M, Bode A, Broy M, et al. Informatics and medicine--from molecules to populations. Methods Inf Med. 2008;47(4):283–95.PubMedGoogle Scholar
  6. 6.
    Lussier YA, Butte AJ, Hunter L. Current methodologies for translational bioinformatics. J Biomed Inform. 2010;43(3):355–7.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sarkar IN. Biomedical informatics and translational medicine. J Transl Med. 2010;8(1):22.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Voros S, Moreau-Gaudry A. Sensor, signal, and imaging informatics: big data and smart health technologies. Yearb Med Inform. 2014;9(1):150–3.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Samosky JT, Thornburg A, Karkhanis T, Petraglia F, Strickler E, Nelson DA, et al. Enhancing medical device training with hybrid physical-virtual simulators: smart peripherals for virtual devices. Stud Health Technol Inform. 2013;184:377–9.PubMedGoogle Scholar
  10. 10.
    McKenna MK. Take advantage of eHealth. J Invasive Cardiol. 2001;13(1):59–60.PubMedGoogle Scholar
  11. 11.
    American Telemedicine Association. What is telemedicine?; 24 Aug 2015. URL: http://www.americantelemed.org/about-telemedicine/what-is-telemedicine#.VgOWhdKl_Id. Accessed 24 Aug 2015. (Archived by WebCite® at http://www.webcitation.org/6bmHAqnDy)
  12. 12.
    Norris AC, Stockdale RS, Sharma S. A strategic approach to m-health. Health Informatics J. 2009;15(3):244–53.CrossRefPubMedGoogle Scholar
  13. 13.
    Teng XF, Zhang YT. M-health: trends in wearable medical devices. Zhongguo Yi Liao Qi Xie Za Zhi. 2006;30(5):330–40.PubMedGoogle Scholar
  14. 14.
    Kvedar JC, Herzlinger R, Holt M, Sanders JH. Connected health as a lever for healthcare reform: dialogue with featured speakers from the 5th Annual Connected Health Symposium. Telemed J E Health. 2009;15(4):312–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Mathur A, Kvedar JC, Watson AJ. Connected health: a new framework for evaluation of communication technology use in care improvement strategies for type 2 diabetes. Curr Diabetes Rev. 2007;3(4):229–34.CrossRefPubMedGoogle Scholar
  16. 16.
    Laakko T, Leppanen J, Lahteenmaki J, Nummiaho A. Mobile health and wellness application framework. Methods Inf Med. 2008;47(3):217–22.PubMedGoogle Scholar
  17. 17.
    Ginsburg GS, Willard HF. Genomic and personalized medicine: foundations and applications. Transl Res. 2009;154(6):277–87.CrossRefPubMedGoogle Scholar
  18. 18.
    Chen J, Qian F, Yan W, Shen B. Translational biomedical informatics in the cloud: present and future. Biomed Res Int. 2013;2013(4):658925.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Ratib O. Imaging informatics: from image management to image navigation. Yearb Med Inform. 2009;4:167–72.Google Scholar
  20. 20.
    Kuzmak PM, Dayhoff RE. The VA’s use of DICOM to integrate image data seamlessly into the online patient record. Proc AMIA Symp. 1999:92–96.Google Scholar
  21. 21.
    Hersh WR, Wallace JA, Patterson PK, Shapiro SE, Kraemer DF, Eilers GM, et al. Telemedicine for the Medicare population: pediatric, obstetric, and clinician-indirect home interventions. Evid Rep Technol Assess (Summ). 2001;24(Suppl):1–32.Google Scholar
  22. 22.
    Mollon B, Chong Jr J, Holbrook AM, Sung M, Thabane L, Foster G. Features predicting the success of computerized decision support for prescribing: a systematic review of randomized controlled trials. BMC Med Inform Decis Mak. 2009;9:11.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Durieux P, Trinquart L, Colombet I, Nies J, Walton R, Rajeswaran A, et al. Computerized advice on drug dosage to improve prescribing practice. Cochrane Database Syst Rev. 2008;3, CD002894.Google Scholar
  24. 24.
    Coorevits P, Sundgren M, Klein GO, Bahr A, Claerhout B, Daniel C, et al. Electronic health records: new opportunities for clinical research. J Intern Med. 2013;274(6):547–60.CrossRefPubMedGoogle Scholar
  25. 25.
    Poissant L, Pereira J, Tamblyn R, Kawasumi Y. The impact of electronic health records on time efficiency of physicians and nurses: a systematic review. J Am Med Inform Assoc. 2005;12(5):505–16.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sanz F, Brunak S, Lopez-Alonso V. INBIOMEDvision: promoting and monitoring biomedical informatics in Europe. Phys Educ Mat. 2013;ii–iii.Google Scholar
  27. 27.
    Gottesman O, Kuivaniemi H, Tromp G, Faucett WA, Li R, Manolio TA, et al. The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future. Genet Med. 2013;15(10):761–71.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ritchie MD, Verma SS, Hall MA, Goodloe RJ, Berg RL, Carrell DS, et al. Electronic medical records and genomics (eMERGE) network exploration in cataract: several new potential susceptibility loci. Mol Vis. 2014;20:1281–95.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Connolly JJ, Glessner JT, Almoguera B, Crosslin DR, Jarvik GP, Sleiman PM, et al. Copy number variation analysis in the context of electronic medical records and large-scale genomics consortium efforts. Front Genet. 2014;5:51.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kukafka R. Public health informatics: the nature of the field and its relevance to health promotion practice. Health Promot Pract. 2005;6(1):23–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Gayle R, Minie M, Nilsson E. Inviting the public: the impact on informatics arising from emerging global health research paradigms. Pac Symp Biocomput. 2015;20:483–7.Google Scholar
  32. 32.
    National Electronic Disease Surveillance System Working Group. National Electronic Disease Surveillance System (NEDSS): a standards-based approach to connect public health and clinical medicine. J Public Health Manag Pract. 2001;7(6):43–50.CrossRefGoogle Scholar
  33. 33.
    Vimarlund V, Wass S. Big data, smart homes and ambient assisted living. Yearb Med Inform. 2014;9(1):143–9.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Mostashari F. The data revolution comes to healthcare. Am J Manag Care. 2013;19(10 Spec No):SP327.PubMedGoogle Scholar
  35. 35.
    Kallander K, Tibenderana JK, Akpogheneta OJ, Strachan DL, Hill Z, ten Asbroek AH, et al. Mobile health (mHealth) approaches and lessons for increased performance and retention of community health workers in low- and middle-income countries: a review. J Med Internet Res. 2013;15(1), e17.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Park JB, Choi HJ, Lee JH, Kang BS. An assessment of the iPad 2 as a CT teleradiology tool using brain CT with subtle intracranial hemorrhage under conventional illumination. J Digit Imaging. 2013;26(4):683–90.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Mc Laughlin P, Neill SO, Fanning N, Mc Garrigle AM, Connor OJ, Wyse G, et al. Emergency CT brain: preliminary interpretation with a tablet device: image quality and diagnostic performance of the Apple iPad. Emerg Radiol. 2012;19(2):127–33.CrossRefPubMedGoogle Scholar
  38. 38.
    Kharrazi H, Chisholm R, VanNasdale D, Thompson B. Mobile personal health records: an evaluation of features and functionality. Int J Med Inform. 2012;81(9):579–93.CrossRefPubMedGoogle Scholar
  39. 39.
    Prue CS, Shannon KL, Khyang J, Edwards LJ, Ahmed S, Ram M, et al. Mobile phones improve case detection and management of malaria in rural Bangladesh. Malar J. 2013;12:48.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wilson K, Brownstein JS. Early detection of disease outbreaks using the Internet. CMAJ. 2009;180(8):829–31.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidemics using search engine query data. Nature. 2009;457(7232):1012–4.CrossRefPubMedGoogle Scholar
  42. 42.
    Banaee H, Ahmed MU, Loutfi A. Data mining for wearable sensors in health monitoring systems: a review of recent trends and challenges. Sens (Basel). 2013;13(12):17472–500.CrossRefGoogle Scholar
  43. 43.
    Bellos CC, Papadopoulos A, Rosso R, Fotiadis DI, editors. Extraction and analysis of features acquired by wearable sensors network. In: Information Technology and Applications in Biomedicine (ITAB), 2010 10th IEEE international conference on; IEEE. 2010;1–4.Google Scholar
  44. 44.
    Rassam MA, Zainal A, Maarof MA. Advancements of data anomaly detection research in wireless sensor networks: a survey and open issues. Sens (Basel). 2013;13(8):10087–122.CrossRefGoogle Scholar
  45. 45.
    Gaura E, Kemp J, Brusey J. Leveraging knowledge from physiological data: on-body heat stress risk prediction with sensor networks. IEEE Trans Biomed Circuits Syst. 2013;7(6):861–70.CrossRefPubMedGoogle Scholar
  46. 46.
    Lee K, Kung S-Y, Verma N. Low-energy formulations of support vector machine kernel functions for biomedical sensor applications. J Signal Process Syst. 2012;69(3):339–49.CrossRefGoogle Scholar
  47. 47.
    Zhu Y. Automatic detection of anomalies in blood glucose using a machine learning approach. J Commun Netw. 2010;13(2):125–31.CrossRefGoogle Scholar
  48. 48.
    Gialelis J, Chondros P, Karadimas D, Dima S, Serpanos D. Identifying Chronic disease complications utilizing state of the art data fusion methodologies and signal processing algorithms. In: Wireless mobile communication and healthcare. New York: Springer Berlin Heidelberg; 2012. P. 256–263.Google Scholar
  49. 49.
    Custodio V, Herrera FJ, Lopez G, Moreno JI. A review on architectures and communications technologies for wearable health-monitoring systems. Sens (Basel). 2012;12(10):13907–46.CrossRefGoogle Scholar
  50. 50.
    Alemdar H, Ersoy C. Wireless sensor networks for healthcare: a survey. Comput Netw. 2010;54(15):2688–710.CrossRefGoogle Scholar
  51. 51.
    Yoo I, Alafaireet P, Marinov M, Pena-Hernandez K, Gopidi R, Chang JF, et al. Data mining in healthcare and biomedicine: a survey of the literature. J Med Syst. 2012;36(4):2431–48.CrossRefPubMedGoogle Scholar
  52. 52.
    Sneha S, Varshney U. Enabling ubiquitous patient monitoring: model, decision protocols, opportunities and challenges. Decis Support Syst. 2009;46(3):606–19.CrossRefGoogle Scholar
  53. 53.
    Wang W, Wang H, Hempel M, Peng D, Sharif H, Chen HH. Secure stochastic ECG signals based on Gaussian mixture model for e -Healthcare Systems. IEEE Syst J. 2011;5(4):564–73.CrossRefGoogle Scholar
  54. 54.
    Murphy SN, Mendis ME, Berkowitz DA, Kohane I, Chueh HC. Integration of clinical and genetic data in the i2b2 architecture. AMIA Annu Symp Proc. 2006:1040.Google Scholar
  55. 55.
    Weber GM, Murphy SN, McMurry AJ, Macfadden D, Nigrin DJ, Churchill S, et al. The Shared Health Research Information Network (SHRINE): a prototype federated query tool for clinical data repositories. J Am Med Inform Assoc. 2009;16(5):624–30.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Viangteeravat T, Brooks IM, Ketcherside WJ, Houmayouni R, Furlotte N, Vuthipadadon S, et al. Biomedical Informatics Unit (BMIU): Slim-prim system bridges the gap between laboratory discovery and practice. Clin Transl Sci. 2009;2(3):238–41.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Shen R, Mo Q, Schultz N, Seshan VE, Olshen AB, Huse J, et al. Integrative subtype discovery in glioblastoma using iCluster. PLoS One. 2012;7(4), e35236.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, Zhu J, et al. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics. 2010;26(12):i237–245.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Liu Y, Devescovi V, Chen S, Nardini C. Multilevel omic data integration in cancer cell lines: advanced annotation and emergent properties. BMC Syst Biol. 2013;7:14.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Stanberry L, Mias GI, Haynes W, Higdon R, Snyder M, Kolker E. Integrative analysis of longitudinal metabolomics data from a personal multi-omics profile. Metabolites. 2013;3(3):741–60.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Andrikopoulou E, Abbate K, Whellan DJ. Conceptual model for heart failure disease management. Can J Cardiol. 2014;30(3):304–11.CrossRefPubMedGoogle Scholar
  62. 62.
    Agboola S, Havasy R, Myint UK, Kvedar J, Jethwani K. The impact of using mobile-enabled devices on patient engagement in remote monitoring programs. J Diabetes Sci Technol. 2013;7(3):623–9.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Anker SD, Koehler F, Abraham WT. Telemedicine and remote management of patients with heart failure. Lancet. 2011;378(9792):731–9.CrossRefPubMedGoogle Scholar
  64. 64.
    Lin WH, Zhang H, Zhang YT. Investigation on cardiovascular risk prediction using physiological parameters. Comput Math Methods Med. 2013;2013(16):272691.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Desjardins D. Remote monitoring poised for growth. Med Net. 2013;19(11):1.Google Scholar
  66. 66.
    Wire B. Web-based transition of care via iGetBetter.com to reduce readmissions. Biomedical Market Newsletter. 2011;21:95.Google Scholar
  67. 67.
    Seto E, Leonard KJ, Cafazzo JA, Barnsley J, Masino C, Ross HJ. Mobile phone-based telemonitoring for heart failure management: a randomized controlled trial. J Med Internet Res. 2012;14(1), e31.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    van der Wal MH, van Veldhuisen DJ, Veeger NJ, Rutten FH, Jaarsma T. Compliance with nonpharmacological recommendations and outcome in heart failure patients. Eur Heart J. 2010;31(12):1486–93.CrossRefPubMedGoogle Scholar
  69. 69.
    Pelletier S. Explosive growth in health care apps raises oversight questions. AAMC Report. 2012;2:1.Google Scholar
  70. 70.
    Nes AA, van Dulmen S, Eide E, Finset A, Kristjansdottir OB, Steen IS, et al. The development and feasibility of a web-based intervention with diaries and situational feedback via smartphone to support self-management in patients with diabetes type 2. Diabetes Res Clin Pract. 2012;97(3):385–93.CrossRefPubMedGoogle Scholar
  71. 71.
    Ruland CM, Andersen T, Jeneson A, Moore S, Grimsbo GH, Borosund E, et al. Effects of an internet support system to assist cancer patients in reducing symptom distress: a randomized controlled trial. Cancer Nurs. 2013;36(1):6–17.CrossRefPubMedGoogle Scholar
  72. 72.
    Ruland CM, Maffei RM, Borosund E, Krahn A, Andersen T, Grimsbo GH. Evaluation of different features of an eHealth application for personalized illness management support: cancer patients' use and appraisal of usefulness. Int J Med Inform. 2013;82(7):593–603.CrossRefPubMedGoogle Scholar
  73. 73.
    Frost JH, Massagli MP. Social uses of personal health information within PatientsLikeMe, an online patient community: what can happen when patients have access to one another’s data. J Med Internet Res. 2008;10(3), e15.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Smith CA, Wicks PJ. PatientsLikeMe: consumer health vocabulary as a folksonomy. AMIA Annu Symp Proc. 2008;2008:682–6.PubMedCentralGoogle Scholar
  75. 75.
    Wicks P, Massagli M, Frost J, Brownstein C, Okun S, Vaughan T, et al. Sharing health data for better outcomes on PatientsLikeMe. J Med Internet Res. 2010;12(2), e19.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Brazma A. Minimum Information About a Microarray Experiment (MIAME)--successes, failures, challenges. Scientific World Journal. 2009;9(4):420–3.CrossRefPubMedGoogle Scholar
  77. 77.
    Blume H. DICOM (Digital Imaging and Communications in Medicine) state of the nation. Are you afraid of data compression? Adm Radiol J. 1996;15(11):36–40.PubMedGoogle Scholar
  78. 78.
    Malhotra K, Gardner S, Patz R. Implementation of elliptic-curve cryptography on mobile healthcare devices. In: International conference on networking, sensing and control. IEEE. 2007;239–244.Google Scholar
  79. 79.
    Tan CC, Wang H, Zhong S, Li Q, (eds). Body sensor network security: an identity-based cryptography approach. In: Proceedings of the first ACM conference on Wireless network security; 2008 March 31–April 2; Alexandria, VA, USA, 2008:148–153.Google Scholar
  80. 80.
    Poon CC, Zhang Y-T, Bao S-D. A novel biometrics method to secure wireless body area sensor networks for telemedicine and m-health. Commun Mag, IEEE. 2006;44(4):73–81.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.School of Chemistry, Biology and Materials EngineeringSuzhou University of Science and TechnologySuzhouChina
  2. 2.Center for Systems BiologySoochow UniversitySuzhouChina
  3. 3.Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of SciencesSuzhouChina
  4. 4.Medical College of Guizhou UniversityGuiyangChina

Personalised recommendations