Advertisement

Microbial Community Dynamics During Soil Ecosystem Development

  • Divya Deonalli
  • Rohit Sharma
  • Kamlesh JangidEmail author
Chapter
  • 726 Downloads

Abstract

Ecological succession is a gradual change in community structure with time, which is important for proper functioning of an ecosystem. For a long time, plants have been in the limelight of community succession. In contrast, the significance of microbial succession in ecosystem development and various functions has only been emphasized relatively recently. Owing to the development of molecular methods over the last decade, microbial communities can now be investigated in much greater depths eventually leading to a better understanding of their contribution in an ecosystem. With the advent of these technologies, it is now possible to study primary succession in diverse ecosystems, such as wildfires, impact regions, paddy fields, etc. In this chapter, using case studies, we discuss the scenarios and successional paths that microbial communities follow in various ecosystems and show that the patterns are very similar in many. However, generalizing these to all communities at this time is not recommended, and the correlations observed from this analyses must be used with caution while applying them to a specific ecosystem.

Keywords

Microbial ecology Primary succession Ecosystem development 

Notes

Acknowledgments

This work was supported by the Department of Biotechnology (DBT; Grant no. BT/PR/0054/NDB/52/94/2007), Government of India, under the project “Establishment of microbial culture collection.” KJ acknowledges the critical inputs from Profs. David C. Coleman, William “Barny” Whitman, and Mark A. Williams throughout his research that helped decipher the successional patterns shown by soil microbial communities during restoration and/or development of several ecosystems.

References

  1. Alfredsen G, Høiland K (2001) Succession of terrestrial macrofungi along a deglaciation gradient at Glacier Bisen, South Norway. Nor J Bot 21:19–37. doi: 10.1111/j.1756-1051.2001.tb01336.x CrossRefGoogle Scholar
  2. Allison SD, Martiny JBH (2007) Resistance, resilience and redundancy in microbial communities. Proc Natl Acad Sci U S A 105:11512–11519. doi: 10.1073/pnas.0801925105 CrossRefGoogle Scholar
  3. Allison V, Miller M, Jastrow J, Matamala R, Zak D (2005) Changes in soil microbial community structure in a Tallgrass Prairie chronosequence. Soil Sci Soc Am J 69:1412–1421. doi: 10.2136/sssaj2004.0252 CrossRefGoogle Scholar
  4. Armas C, Padilla FM, Pugnaire FI, Jackson RB (2010) Hydraulic lift and tolerance to salinity of semiarid species: consequences for species interactions. Oecologia 162:11–21. doi: 10.1007/s00442-009-1447-1 PubMedCrossRefGoogle Scholar
  5. Bach E, Baer S, Meyer C, Six J (2010) Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biol Biochem 42:2182–2191. doi: 10.1016/j.soilbio.2010.08.014 CrossRefGoogle Scholar
  6. Baer SG, Kitchen DJ, Blair JM, Rice CW (2002) Changes in ecosystem structure and function along a chronosequence of restored grasslands. Ecol Appl 12:1688–1701. doi: 10.1890/1051-0761(2002)012[1688:CIESAF]2.0.CO;2 CrossRefGoogle Scholar
  7. Baldrian P, Trogl J, Frouz J, Snajdr J, Valaskova V, Merhautova V, Cajthaml T, Herinkova J (2008) Enzyme activities and microbial biomass in topsoil layer during spontaneous succession in spoil heaps after brown coal mining. Soil Biol Biochem 40:2107–2115. doi: 10.1016/j.soilbio.2008.02.019 CrossRefGoogle Scholar
  8. Banning NC, Gleeson DB, Grigg AH, Grant CD, Andersen GL, Brodie EL, Murph DV (2011) Soil microbial community successional patterns during forest ecosystem Restoration. Appl Environ Microbiol 77:6158–6164. doi: 10.1128/AEM.00764-11 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bardgett RD, Shine A (1999) Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biol Biochem 31:317–321CrossRefGoogle Scholar
  10. Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK (2005) A temporal approach to linking aboveground and belowground ecology. Trends Ecol Evol 20:634–641. doi: 10.1016/j.tree.2005.08.005 PubMedCrossRefGoogle Scholar
  11. Barns SM, Takala SL, Kuske CR (1999) Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl Environ Microbiol 65:1731–1737PubMedPubMedCentralGoogle Scholar
  12. Bearden BN, Petersen L (2000) Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of vertisols. Plant Soil 218:173–183. doi: 10.1023/A:1014923911324 CrossRefGoogle Scholar
  13. Bekku Y, Kum A, Nakatsubo T, Masuzawa T, Kanda H, Koizu H (1999) Microbial biomass in relation to primary succession on Artic deglaciated moraines. Polar Biosci 12:47–53Google Scholar
  14. Bernasconi SM, Bauder A, Bourdon B et al (2011) Chemical and biological gradients along the Damma glacier soil chronosequence, Switzerland. Vadose Zone J 10:867–883. doi: 10.2136/vzj2010.0129 CrossRefGoogle Scholar
  15. Besemer K, Moeseneder MM, Arrieta JM, Herndl GJ, Peduzzi P (2005) Complexity of bacterial communities in a river-floodplain system (Danube, Austria). Appl Environ Microbiol 71:609–620. doi: 10.1128/AEM.71.2.609-620.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bhatia M, Sharp M, Foght J (2006) Distinct communities exist beneath a High Arctic polythermal glacier. Appl Environ Microbiol 72:5838–5845. doi: 10.1128/AEM.00595-06 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Blaalid R, Carlsen T, Kumar S, Halvorsen R, Ugland K, Fontana G, Kauserud S (2012) Changes in the root-associated fungal communities along a primary succession gradient analysed by 454 pyrosequencing. Mol Ecol 21:1897–1908. doi: 10.1111/j.1365-294X.2011.05214.x PubMedCrossRefGoogle Scholar
  18. Bodelier PLE (2003) Interactions between oxygen-releasing roots and microbial processes in flooded soils and sediments. Root Ecol 168:331–362. doi: 10.1007/978-3-662-09784-7_13 CrossRefGoogle Scholar
  19. Bossio DA, Girvan MS, Verchot L, Bullimore J, Borelli T, Albrecht A, Scow KM, Ball AS, Pretty JN, Osborn AM (2005) Soil microbial community response to land use change in an agricultural landscape of Western Kenya. Microb Ecol 49:50–62. doi: 10.1007/s00248-003-0209-6 PubMedCrossRefGoogle Scholar
  20. Bowman WD, Steltzer H, Rosenstiel TN, Cleveland CC, Meier CL (2004) Litter effects of two co-occurring alpine species on plant growth, microbial activity and immobilization of nitrogen. Oikos 104:336–344CrossRefGoogle Scholar
  21. Bradley JA, Arndt S, Šabacká M, Benning LG, Barker GL, Blacker JJ, Yallop ML, Wright KE, Bellas CM, Telling J, Tranter M, Anesio A (2016) Microbial dynamics in a High-Arctic glacier forefield: a combined field, laboratory, and modelling approach. Biogeosciences 13:5677–5696. doi: 10.5194/bg-13-5677-2016 CrossRefGoogle Scholar
  22. Brown S, Jumpponen A (2014) Contrasting primary successional trajectories of fungi and bacteria in retreating glacier soils. Mol Ecol 23:481–497. doi: 10.1111/mec.12487 PubMedCrossRefGoogle Scholar
  23. Buckley DH, Huangyutitham V, Hsu SF, Nelson TA (2007) Stable isotope probing with 15N2 reveals novel noncultivated diazotrophs in soil. Appl Environ Microbiol 73:3196–3204. doi: 10.1128/AEM.02610-06 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cadotte MW (2007) Competition-colonization trade-offs and disturbance effects at multiple scales. Ecology 88:823–829. doi: 10.1890/06-1117
  25. Calderon FJ, Jackson LE, Scow KM, Rolston DE (2001) Short-term dynamics of nitrogen, microbial activity, and phospholipid fatty acids after tillage. Soil Sci Soc Am J 65:118–126. doi: 10.2136/sssaj2001.651118x CrossRefGoogle Scholar
  26. Caravaca F, Alguacil MM, Figueroa D, Barea JM, Roldan A (2003) Re-establishment of Retama sphaerocarpa as a target species for reclamation of soil physical and biological properties in a semiarid Mediterranean area. For Ecol Manag 182:49–58. doi: 10.1016/S0378-1127(03)00067-7 CrossRefGoogle Scholar
  27. Cherif M, Loreau M (2007) Stoichiometric constraints on resource use, competitive interactions, and elemental cycling in microbial decomposers. Am Nat 169:709–724. doi: 10.1086/516844 PubMedCrossRefGoogle Scholar
  28. Chodak M, Pietrzykowski M, Niklinska M (2009) Development of microbial properties in a chronosequence of sandy mine soils. Appl Soil Ecol 41:259–268. doi: 10.1016/j.apsoil.2008.11.009 CrossRefGoogle Scholar
  29. Cockell CS, Lee P (2002) The biology of impact craters–a review. Biol Rev 77:279–310. doi: 10.1017/S146479310100584X PubMedCrossRefGoogle Scholar
  30. Conrad R, Frenzel P (2002) Flooded soils. In: Bitton G (ed) The encyclopedia of environmental microbiology. Wiley, New York, pp 1316–1333. doi: 10.1002/0471263397.env034 Google Scholar
  31. Coomes D, Bentley W, Tanentzap A, Burrows L (2013) Soil drainage and phosphorus depletion contribute to retrogressive succession along a New Zealand chronosequence. Plant Soil 367:77–91. doi: 10.1007/s11104-013-1649-5 CrossRefGoogle Scholar
  32. Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Mueller-Dombois D, Vitousek PM (1995) Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76:1407–1424CrossRefGoogle Scholar
  33. Crews TE, Kurina LM, Vitousek PM (2001) Organic matter and nitrogen accumulation and nitrogen fixation during early ecosystem development in Hawaii. Biogeochemistry 52:259–279. doi: 10.1023/A:1006441726650 CrossRefGoogle Scholar
  34. Cutler N (2010) Long-term primary succession: a comparison of non-spatial and spatially explicit inferential techniques. Plant Ecol 208:123–136. doi: 10.1007/s11258-009-9692-2 CrossRefGoogle Scholar
  35. Cutler NA, Chaput DL, van der Gast CJ (2014) Long-term changes in soil microbial communities during primary succession. Soil Biol Biochem 69:359–370. doi: 10.1016/j.soilbio.2013.11.022 CrossRefGoogle Scholar
  36. Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327. doi: 10.1111/j.1574-6941.2010.00860.x PubMedCrossRefGoogle Scholar
  37. Drijber RA, Doran JW, Parkhurst AM, Lyon DJ (2000) Changes in soil microbial community structure with tillage under long-term wheat-fallow management. Soil Biol Biochem 32:1419–1430CrossRefGoogle Scholar
  38. Edwards A, Cook S (2015) Microbial dynamics in glacier forefield soils show succession is not just skin deep. Mol Ecol 24:963–966. doi: 10.1111/mec.13098 PubMedCrossRefGoogle Scholar
  39. Eller G, Kruger M, Frenzel P (2005) Comparing field and microcosm experiments: a case study on methano- and methylotrophic bacteria in paddy soil. FEMS Microbiol Ecol 51:279–291. doi: 10.1016/j.femsec.2004.09.007 PubMedCrossRefGoogle Scholar
  40. Esperschutz J, Perez-de-Mora A, Schreiner K, Welzl G, Buegger F, Zeyer J, Hagedorn F, Munch JC, Schloter M (2011) Microbial food web dynamics along a soil chronosequence of a glacier forefield. Biogeosciences 8:3283–3294. doi: 10.5194/bg-8-3283-2011 CrossRefGoogle Scholar
  41. Ferrenberg S, ONeill SP, Knelman JE, Todd B, Duggan S, Bradley D, Robinson T, Schmidt SK, Townsend AR, Williams MW, Cleveland CC, Melbourne BA, Jiang L, Nemergut DR (2013) Changes in assembly processes in soil bacterial communities following a wildfire disturbance. ISME J 7:1102–1111. doi: 10.1038/ismej.2013.11 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Fierer N, Nemergut D, Knight R, Craine JM (2010) Changes through time: integrating microorganisms into the study of succession. Res Microbiol 161:635–642. doi: 10.1016/j.resmic.2010.06.002 PubMedCrossRefGoogle Scholar
  43. Forster S, Nicolson T (1981) Microbial aggregation of sand in a Maritime Dune Succession. Soil Biol Biochem 13:205–208CrossRefGoogle Scholar
  44. Fujimura R, Sato Y, Nishizawa T, Nanba K, Oshima K, Hattori M, Kamijo T, Ohta H (2012) Analysis of early bacterial communities on volcanic deposits on the Island of Miyake (Miyakejima), Japan: a 6-year study at a fixed site. Microbes Environ 27:19–29. doi: 10.1264/jsme2.ME11207 PubMedCrossRefGoogle Scholar
  45. Fukami T, Morin PJ (2003) Productivity-biodiversity relationships depend on the history of community assembly. Nature 424:423–426. doi: 10.1038/nature01785 PubMedCrossRefGoogle Scholar
  46. Garcia C, Hernandez T, Costa F (1997) Potential use of dehydrogenase activity as an index of microbial activity in degraded soils. Commun Soil Sci Plant Anal 28:123–134CrossRefGoogle Scholar
  47. Gomez-Alvarez V, King GM, Nusslein K (2007) Comparative bacterial diversity in recent Hawaiian volcanic deposits of different ages. FEMS Microbiol Ecol 60:60–73. doi: 10.1111/j.1574-6941.2006.00253.x PubMedCrossRefGoogle Scholar
  48. Grieves RAF (1988) The Haughton impact structure: summary and synthesis of the results of the HISS project. Meteorit Planet Sci 23:249–254Google Scholar
  49. Gronlund T, Lortie G, Guibault J, Bouchard M, Sanissto M (1990) Diatoms and arcellaceans from Lac du Cratere du Nouveau-Quebec, Ungava, Quebec, Canada. Can J Bot 68:1187–1200CrossRefGoogle Scholar
  50. Grootjans AP, van den Ende FP, Walsweer AF (1997) The role of microbial mats during primary succession in calcareous dune slacks: an experimental approach. J Coast Conserv 3:95–102CrossRefGoogle Scholar
  51. Harris JA (2003) Measurements of the soil microbial community for estimating the success of restoration. Eur J Soil Sci 54:801–808. doi: 10.1046/j.1351-0754.2003.0559.x CrossRefGoogle Scholar
  52. Harris J (2009) Ecology: facilitators or followers? Soil microbial communities and restoration. Science 325:573–574. doi: 10.1126/science.1172975 PubMedCrossRefGoogle Scholar
  53. Hopkins DW, Badalucco L, English LC, Meli SM, Chudek JA, Ioppolo A (2007) Plant litter decomposition and microbial characteristics in volcanic soils (Mt Etna, Sicily) at different stages of development. Biol Fertil Soils 43:461–469. doi: 10.1007/s00374-006-0124-3 CrossRefGoogle Scholar
  54. Huggett R (1998) Soil chronosequences, soil development, and soil evolution: a critical review. Catena 32:155–172CrossRefGoogle Scholar
  55. Jangid K, Williams MA, Franzluebbers AJ, Blair JM, Coleman DC, Whitman WB (2010) Development of soil microbial communities during tall grass prairie restoration. Soil Biol Biochem 42:302–312. doi: 10.1016/j.soilbio.2009.11.008 CrossRefGoogle Scholar
  56. Jangid K, Williams MA, Franzluebbers AJ, Schmidt TM, Coleman DC, Whitman WB (2011) Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Biol Biochem 43:2184–2193. doi: 10.1016/j.soilbio.2011.06.022
  57. Jangid K, Whitman W, Condron L, Turner B, Williams M (2013) Progressive and retrogressive ecosystem development coincide with soil bacterial community change in a dune system under lowland temperate rainforest in New Zealand. Plant Soil 367:235–247. doi: 10.1007/s11104-013-1720-2 CrossRefGoogle Scholar
  58. Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16. doi: 10.1007/s00374-002-0546-5 Google Scholar
  59. Johansen A, Finlay RD, Olsson PA (1997) Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 133:705–712CrossRefGoogle Scholar
  60. Johnson EA, Miyanishi K (2008) Testing the assumptions of chronosequences in succession. Ecol Lett 11:419–431. doi: 10.1111/j.1461-0248.2008.01173.x PubMedCrossRefGoogle Scholar
  61. Jumpponen A (2003) Soil fungal community assembly in a primary successional glacier forefront ecosystem as inferred from rDNA sequence analyses. New Phytol 158:569–578. doi: 10.1046/j.1469-8137.2003.00767.x CrossRefGoogle Scholar
  62. Kandeler E, Tscherko D, Spiegel H (1999) Long-term monitoring of microbial biomass. Biol Fertil Soils 28:343–351CrossRefGoogle Scholar
  63. Kastovska K, Elster J, Stibal M, Santruckova H (2005) Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (high Arctic). Microb Ecol 50:396–407. doi: 10.1007/s00248-005-0246-4 PubMedCrossRefGoogle Scholar
  64. Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil microorganisms. Trends Ecol Evol 12:139–143PubMedCrossRefGoogle Scholar
  65. Kikvidze Z, Armas C, Fukuda K, Martinez-Garcia L, Miyata M, Oda-Tanaka A, Pugnaire F, Wu B (2010) The role of arbuscular mycorrhizae in primary succession: differences and similarities across habitats. Web Ecol 10:50–57. doi: 10.5194/we-10-50-2010 CrossRefGoogle Scholar
  66. King GM (2003) Contributions of atmospheric CO and hydrogen uptake to microbial dynamics on recent Hawaiian volcanic deposits. Appl Environ Microbiol 69:4067–4075. doi: 10.1128/AEM.69.7.4067-4075.2003 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kirk J, Beaudette L, Hart M, Moutoglis P, Klironomos J, Lee H, Trevors J (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188. doi: 10.1016/j.mimet.2004.04.006 PubMedCrossRefGoogle Scholar
  68. Knelman JE, Legg TM, O’Neill SP, Washenberger CL, González A, Cleveland CC, Nemergut DR (2012) Bacterial community structure and function change in association with colonizer plants during early primary succession in a glacier forefields. Soil Biol Biochem 46:172–180. doi: 10.1016/j.soilbio.2011.12.001 CrossRefGoogle Scholar
  69. Knops JMH, Tilman D (2000) Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment. Ecology 81:88–98. doi: 10.1890/0012-9658(2000)081[0088:DOSNAC]2.0.CO;2 CrossRefGoogle Scholar
  70. Krause S, Luke C, Frenzel P (2010) Succession of methanotrophs in oxygen-methane counter-gradients of flooded rice paddies. ISME J 4:1603–1607. doi: 10.1038/ismej.2010.82 PubMedCrossRefGoogle Scholar
  71. Langhans TM, Storm C, Schwabe A (2009) Community assembly of biological soil crusts of different successional stages in a temperate sand ecosystem, as assessed by direct determination and enrichment techniques. Microb Ecol 58:394–407. doi: 10.1007/s00248-009-9532-x PubMedCrossRefGoogle Scholar
  72. Lazzaro A, Franchini AG, Brankatschk R, Zeyer J (2010) Pioneer communities in the forefields of retreating glaciers: how microbes adapt to a challenging. In: Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex, Badajoz, pp 43–52Google Scholar
  73. Li Y, Wen H, Chen L, Yin T (2014) Succession of bacterial community structure and diversity in soil along a chronosequence of reclamation and re-vegetation on coal mine spoils in China. PLoS One 9:e115024. doi: 10.1371/journal.pone.0115024 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Liu R, Li K, Zhang H, Zhu J, Joshi D (2014) Spatial distribution of microbial communities associated with dune landform in the Gurbantunggut Desert, China. J Microbiol 52:898–907. doi: 10.1007/s12275-014-4075-3 PubMedCrossRefGoogle Scholar
  75. Lukesova A (2001) Soil algae in brown coal and lignite post-mining areas in Central Europe (Czech Republic and Germany). Restor Ecol 9:341–350. doi: 10.1046/j.1526-100X.2001.94002.x CrossRefGoogle Scholar
  76. Ma X, Liu M, Li Z (2016) Shifts in microbial biomass and community composition in subtropical paddy soils under a gradient of manure amendment. Biol Fertil Soils 52:775–787. doi: 10.1007/s00374-016-1118-4 CrossRefGoogle Scholar
  77. Marshall CB, McLaren JR, Turkington R (2011) Soil microbial communities resistant to changes inplant functional group composition. Soil Biol Biochem 43:78–85CrossRefGoogle Scholar
  78. Mc Lauchlan K (2006) The nature and longevity of agricultural impacts on soil carbon and nutrients: a review. Ecosystems 9:1364–1382. doi: 10.1007/s10021-005-0135-1 CrossRefGoogle Scholar
  79. McCann CM, Wade MJ, Gray ND, Roberts JA, Hubert CRJ, Graham DW (2016) Microbial communities in a high arctic polar desert landscape. Front Microbiol 7:419. doi: 10.3389/fmicb.2016.00419 PubMedPubMedCentralGoogle Scholar
  80. McKinley VL, Peacock AD, White DC (2005) Microbial community PLFA and PHB responses to ecosystem restoration in tallgrass prairie soils. Soil Biol Biochem 37:1946–1958. doi: 10.1016/j.soilbio.2010.09.016 CrossRefGoogle Scholar
  81. Merila P, Strommerb R, Fritzc H (2002) Soil microbial activity and community structure along a primary succession transect on the land-uplift coast in western Finland. Soil Biol Biochem 34:1647–1654. doi: 10.1016/S0038-0717(02)00148-7 CrossRefGoogle Scholar
  82. Mueller-Niggemann C, Utami SR, Marxen A, Mangelsdorf K, Bauersachs T, Schwark L (2016) Distribution of tetraether lipids in agricultural soils–differentiation between paddy and upland management. Biogeosciences 13:1647–1666. doi: 10.5194/bg-13-1647-2016 CrossRefGoogle Scholar
  83. Muller AK, Westergaard K, Christensen S, Sorensen SJ (2001) The effect of long-term mercury pollution on the soil microbial community. FEMS Microbiol Ecol 36:11–19. doi: 10.1111/j.1574-6941.2001.tb00821.x PubMedCrossRefGoogle Scholar
  84. Murase J, Noll M, Frenzel P (2006) Impact of protists on the activity and structure of the bacterial community in a rice field soil. Appl Environ Microbiol 72:5536–5444. doi: 10.1128/AEM.00207-06 CrossRefGoogle Scholar
  85. Nakamura A, Tun CC, Asakawa S, Kimura M (2003) Microbial community responsible for the decomposition of rice straw in a paddy field: estimation by phospholipids fatty acid analysis. Biol Fertil Soils 38:288–295. doi: 10.1007/s00374-003-0658-6 CrossRefGoogle Scholar
  86. Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, Schmidt SK (2006) Microbial community succession in an unvegetated, recently deglaciated soil. Microb Ecol 53:110–122. doi: 10.1007/s00248-006-9144-7 PubMedCrossRefGoogle Scholar
  87. Nicol GW, Glover LA, Prosser JI (2003) Spatial analysis of archaeal community structure in grassland soil. Appl Environ Microbiol 69:7420–7429. doi: 10.1128/AEM.69.12.7420-7429.2003 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10:2966–2978. doi: 10.1111/j.1462-2920.2008.01701.x
  89. Noll M, Matthies D, Frenzel P, Derakshani M, Liesack W (2005) Succession of bacterial community structure and diversity in a paddy soil oxygen gradient. Environ Microbiol 7:382–395. doi: 10.1111/j.1462-2920.2005.00700.x PubMedCrossRefGoogle Scholar
  90. Nyberg G, Tobella B, Kinyangi J, Ilstedt U (2012) Soil property changes over a 120-yr chronosequence from forest to agriculture in western Kenya. Hydrol Earth Syst Sci 16:2085–2094. doi: 10.5194/hess-16-2085-2012 CrossRefGoogle Scholar
  91. Ohtonen R, Fritze H, Pennanen T, Jumpponen A, Trappe J (1999) Ecosystem properties and microbial community changes in primary succession on a glacier forefront. Oecologia 119:239–246PubMedCrossRefGoogle Scholar
  92. Okabe S, Odagiri M, Ito T, Satoh H (2007) Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Appl Environ Microbiol 73:971–980. doi: 10.1128/AEM.02054-06 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Pennanen T, Stroemmer R, Markkola A, Fritze H (2001) Microbial and plant community structure across a primary succession gradient. Scand J For Res 16:37–43. doi: 10.1080/028275801300004398 CrossRefGoogle Scholar
  94. Potthoff M, Steenwerth KL, Jackson LE, Drenovsky RE, Scow KM, Joergensen RG (2006) Soil microbial community composition as affected by restoration practices in California grassland. Soil Biol Biochem 38:1851–1860. doi: 10.1016/j.soilbio.2005.12.009 CrossRefGoogle Scholar
  95. Pugnaire FI, Luque MT, Armas C, Gutierrez L (2006) Colonization processes in semi-arid Mediterranean old-fields. J Arid Environ 65:591–603. doi: 10.1016/j.jaridenv.2005.10.002 CrossRefGoogle Scholar
  96. Rao S, Chan Y, Bugler-Lacap DC, Bhatnagar A, Bhatnagar M, Pointing SB (2016) Microbial diversity in soil, Sand Dune and Rock Substrates of the Thar Monsoon Desert, India. Indian J Microbiol 56:35–45. doi: 10.1007/s12088-015-0549-1 PubMedCrossRefGoogle Scholar
  97. Rime T, Hartmann M, Brunner I et al (2015) Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield. Mol Ecol 24:1091–1108. doi: 10.1111/mec.13051 PubMedCrossRefGoogle Scholar
  98. Ronca S, Ramond J-B, Jones BE, Seely Mand Cowan DA (2015) Namib Desert dune/inter dune transects exhibit habitat-specific edaphic bacterial communities. Front Microbiol 6:845. doi: 10.3389/fmicb.2015.00845 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Saleh-Lakha S, Miller M, Campbell RG, Schneider K, Elahimanesh P, Hart MM, Trevors JT (2005) Microbial gene expression in soil: methods, applications and challenges. J Microbiol Methods 63:1–19. doi: 10.1016/j.mimet.2005.03.007 PubMedCrossRefGoogle Scholar
  100. Samson F, Knopf F, Ostlie W (2004) Great Plains ecosystems: past, present, and future. Wildl Soc Bull 32:6–15. doi: 10.2193/0091-7648(2004)32[6:GPEPPA]2.0.CO;2 CrossRefGoogle Scholar
  101. Sato Y, Nishihara H, Yoshida M, Watanabe M, Rondal JD, Ohta H (2004) Occurrence of hydrogen-oxidizing Ralstonia species as primary microorganisms in the Mt. Pinatubo volcanic mudflow deposits. Soil Sci Plant Nutr 50:855–861. doi: 10.1080/00380768.2004.10408546 CrossRefGoogle Scholar
  102. Schmidt K, Reed S, Nemergut D, Grandy A, Cleveland C, Weintraub M, Hill A, Costello E, Meyer A, Neff J, Martin A (2008) The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils. Proc R Soc 275:2793–2802. doi: 10.1098/rspb.2008.0808 CrossRefGoogle Scholar
  103. Schutte MEU, Abdo Z, Bent S, Williams C, Schneider M, Solheim B, Forney L (2009) Bacterial succession in a glacier foreland of the High Arctic. ISME J 3:1258–1268. doi: 10.1038/ismej.2009.71 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Shrestha P, Noll M, Liesack W (2007) Phylogenetic identity, growth-response time and rRNA operon copy number of soil bacteria indicate different stages of community succession. Environ Microbiol 9:2464–2474. doi: 10.1111/j.1462-2920.2007.01364.x PubMedCrossRefGoogle Scholar
  105. Siddique MAM, Barua P, Ghani MH (2012) Comparative study of physico-chemical properties of soil according to the age of aquaculture pond of Bangladesh. Mesopot J Mar Sci 27:29–38Google Scholar
  106. Sigler WV, Crivii S, Zeyer J (2002) Bacterial succession in glacial forefield soils characterized by community structure, activity and opportunistic growth dynamics. Microb Ecol 44:306–316. doi: 10.1007/s00248-002-2025-9 PubMedCrossRefGoogle Scholar
  107. Six J, Elliott ET, Paustian K (2000) Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32:2099–2103. doi: 10.1016/S0038-0717(00)00179-6 CrossRefGoogle Scholar
  108. Soliveres S, van der Plas F, Manning P et al (2016) Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536:456–459. doi: 10.1038/nature19092 PubMedCrossRefGoogle Scholar
  109. Stevens PR, Walker TW (1970) The chronosequence concept and soil formation. Q Rev Biol 45:333–350CrossRefGoogle Scholar
  110. Sugano A, Tsuchimoto H, Tun CC, Asakawa S, Kimura M (2005) Succession and phylogenetic profile of eubacterial communities in rice straw incorporated into a rice field: estimation by PCR-DGGE analysis. Soil Sci Plant Nutr 51:51–60. doi: 10.1111/j.1747-0765.2005.tb00006.x CrossRefGoogle Scholar
  111. Tarlera S, Jangid K, Ivester AH, Whitman WB, Williams MA (2008) Microbial community succession and bacterial diversity in soils during 77,000 years of ecosystem development. FEMS Microbiol Ecol 64:129–140. doi: 10.1111/j.1574-6941.2008.00444.x PubMedCrossRefGoogle Scholar
  112. Van der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310. doi: 10.1111/j.1461-0248.2007.01139.x PubMedCrossRefGoogle Scholar
  113. Vazquez G, Moreno-Casasola P, Barrera O (1998) Interaction between algae and seed germination in tropical dune slack species: a facilitation process. Aquat Bot 60:409–416. doi: 10.1016/S0304-3770(97)00087-9 CrossRefGoogle Scholar
  114. Wagner D, Lipski A, Embacher A, Gattinger A (2005) Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality. Environ Microbiol 7:1582–1592. doi: 10.1111/j.1462-2920.2005.00849.x PubMedCrossRefGoogle Scholar
  115. Walker L, del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  116. Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development. J Ecol 98:725–736. doi: 10.1111/j.1365-2745.2010.01664.x CrossRefGoogle Scholar
  117. Wang B, Liu GB, Xue S, Zhu B (2011) Changes in soil physico-chemical and microbiological properties during natural succession on abandoned farmland in the Loess Plateau. Environ Earth Sci 62:915–925. doi: 10.1007/s12665-010-0577-4 CrossRefGoogle Scholar
  118. Welc M, Banemann E, Fliebbach A, Frossard E, Jansa J (2012) Soil bacterial and fungal communities along a soil chronosequence assessed by fatty acid profiling. Soil Biol Biochem 49:184–192. doi: 10.1016/j.soilbio.2012.01.032 CrossRefGoogle Scholar
  119. Williams MA, Jangid K, Shanmugam SG, Whitman WB (2013) Bacterial communities in soil mimic patterns of vegetative succession and ecosystem climax but are resilient to change between seasons. Soil Biol Biochem 57:749–757. doi: 10.1016/j.soilbio.2012.08.023 CrossRefGoogle Scholar
  120. Xu X, Inubushi K, Sakamoto K (2006) Effect of vegetations and temperature on microbial biomass carbon and metabolic quotients of temperate volcanic forest soils. Geoderma 136:310–319. doi: 10.1016/j.geoderma.2006.03.045 CrossRefGoogle Scholar
  121. Zhang B, Wu X, Zhang G, Li S, Zhang W, Chen X, Sun L, Zhang B, Liu G, Chen T (2016) The diversity and biogeography of the communities of Actinobacteria in the forelands of glaciers at a continental scale. Environ Res Lett 11:054012. doi: 10.1088/1748-9326/11/5/054012 CrossRefGoogle Scholar
  122. Zumsteg A, Luster J, Goransson H, Smittenberg R, Brunner I, Bernasconi S, Zeyer J, Frey B (2012) Bacterial, archaeal and fungal succession in the forefield of a receding glacier. Microb Ecol 63:552–564. doi: 10.1007/s00248-011-9991-8 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of BiotechnologyMithibai College of Arts, Chauhan Institute of Science & Amruthben Jivanlal College of Commerce and EconomicsMumbaiIndia
  2. 2.National Centre for Microbial ResourceNational Centre for Cell SciencePuneIndia

Personalised recommendations