Advertisement

Fermented Foods, Microbiota and Human Health

  • Ann Catherine Archer
  • Prakash M. HalamiEmail author
Chapter

Abstract

Fermentation is an age-old process aided by microorganisms that, directly or by the action of bioactive components produced by them, impart several health benefits. A plethora of fermented foods have opened new avenues of scientific research for tapping their various health-promoting properties. In addition, globalization has exposed consumers to ethnic fermented products once available only in a local community. Fermented foods are found to alleviate many diseases including gastrointestinal disorders, lactose intolerance, cancer, hypertension, allergy and metabolic syndromes and maintain digestive health and immune functions. Understanding of the complex interactions of diet, gut, microbiota and host in addition to microbiome studies of ethnic populations will reveal much about the mechanisms by which microbiota are associated with human health.

Keywords

Bioactive compound Fermented foods Fermented vegetables Human health Lactic acid bacteria Probiotic 

Notes

Acknowledgements

The authors gratefully acknowledge the director, CSIR-Central Food Technological Research Institute, Mysore, for providing necessary facilities. ACA wishes to acknowledge University Grants Commission for grant of Maulana Azad National Fellowship.

References

  1. Aihara K, Kajimoto O, Hirata H, Takahashi R, Nakamura Y (2005) Effect of powdered fermented milk with Lactobacillus helveticus on subjects with high-normal blood pressure or mild hypertension. J Am Coll Nutr 24(4):257–265PubMedCrossRefGoogle Scholar
  2. An J, Jung SM, Chan K, Tam CF (2014) Development of a 28-day Kimchi Cyclic menu for Health. J Culinary Sci Technol 12(1):43–66CrossRefGoogle Scholar
  3. Anukam KC, Reid G (2009) African traditional fermented foods and probiotics. J Med Food 12(6):1177–1184PubMedCrossRefGoogle Scholar
  4. Aoki H, Uda I, Tagami K, Furuta Y, Endo Y, Fujimoto K (2003) The production of a new tempeh-like fermented soybean containing a high level of γ-aminobutyric acid by anaerobic incubation with Rhizopus. Biosci Biotechnol Biochem 67:1018–1023. doi: 10.1271/bbb.67.1018 PubMedCrossRefGoogle Scholar
  5. Archer AC, Halami PM (2015) Probiotic attributes of Lactobacillus fermentum isolated from human feces and dairy products. Appl Microbiol Biotechnol 99(19):8113–8123. doi: 10.1007/s00253-015-6679-x PubMedCrossRefGoogle Scholar
  6. Archer AC, Muthukumar SP, Halami PM (2015) Anti-inflammatory potential of probiotic Lactobacillus spp. on carrageenan induced paw edema in Wistar rats. Int J Biol Macromol 81:530–537. doi: 10.1016/j.ijbiomac.2015.08.044 PubMedCrossRefGoogle Scholar
  7. Arvind K, Nikhlesh KS, Pushpalata RS (2010) Inhibition of 1,2-dimethylhydrazine induced colon genotoxicity in rats by the administration of probiotic curd. Mol Biol Rep 37:1373–1376. doi: 10.1007/s11033-009-9519-1 CrossRefGoogle Scholar
  8. Astrup A (2014) Yogurt and dairy product consumption to prevent cardiometabolic diseases: epidemiologic and experimental studies. Am J Clin Nutr 99(5):1235S–1242S. doi: 10.3945/ajcn.113.073015 PubMedCrossRefGoogle Scholar
  9. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101(44):15718–15723Google Scholar
  10. Benchimol EI, Mack DR (2004) Probiotics in relapsing and chronic diarrhea. J Pediatr Hematol Oncol 26:515–517PubMedCrossRefGoogle Scholar
  11. Blann AD, Landray MJ, Lip GY (2002) An overview of antithrombotic therapy. BMJ 325(7367):762–765. doi: 10.1136/bmj.325.7367.762 PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bradamante S, Barenghi L, Villa A (2004) Cardiovascular protective effects of resveratrol. Cardiovasc Drug Rev 22(3):169–188PubMedCrossRefGoogle Scholar
  13. Breidt F, McFeeters RF, Perez-Diaz I, Lee CH (2013) Fermented vegetables. In: Doyle MP, Buchanan RL (eds) Food microbiology: fundamentals and frontiers, 4th edn. ASM Press, Washington, pp 841–855. doi: 10.1128/9781555818463.ch33 Google Scholar
  14. Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM et al (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50(11):2374–2383PubMedCrossRefGoogle Scholar
  15. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM et al (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57(6):1470–1481PubMedCrossRefGoogle Scholar
  16. Chandan RC, Kilara A (eds) (2013) Manufacturing yogurt and fermented milks, 2nd edn. Wiley, Chichester, 477ppGoogle Scholar
  17. Chang HW, Kim KH, Nam YD, Roh SW, Kim MS, Jeon CO, Oh HM, Bae JW (2008) Analysis of yeast and archaeal population dynamics in kimchi using denaturing gradient gel electrophoresis. Int J Food Microbiol 126:159–166PubMedCrossRefGoogle Scholar
  18. Chettri R, Tamang JP (2014) Functional properties of tungrymbai and bekang, naturally fermented soybean foods of North East India. Int J Ferment Foods 3:87–103CrossRefGoogle Scholar
  19. Choi YH, Kim YA, Park C, Choi BT, Lee WH, Hwang KMH, Jung KO, Park KY (2004) β-sitosterol induced growth inhibition is associated with up-regulation of Cdk inhibitor p21WAF1/CIP1 in human colon cancer cells. J Kor Soc Food Sci Nutr 33:1–6CrossRefGoogle Scholar
  20. Corder R, Mullen W, Khan NQ, Marks SC, Wood EG, Carrier MJ, Crozier A (2006) Oenology: red wine procyanidins and vascular health. Nature 444:566. doi: 10.1038/444566a PubMedCrossRefGoogle Scholar
  21. Cross ML, Stevenson LM, Gill HS (2001) Anti-allergy properties of fermented foods: an important immunoregulatory mechanism of lactic acid bacteria? Int Immunopharmacol 1(5):891–901PubMedCrossRefGoogle Scholar
  22. De Santis A, Famularo G, De Simone C (2000) Probiotics for the hemodynamic alterations of patients with liver cirrhosis. Am J Gastroenterol 95:323–324. doi: 10.1111/j.1572-0241.2000.01726.x PubMedCrossRefGoogle Scholar
  23. De Vuyst L, Vrancken G, Ravyts F, Rimaux T, Weckx S (2009) Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota. Food Microbiol 26:666–675. doi: 10.1016/j.fm.2009.07.012 PubMedCrossRefGoogle Scholar
  24. Devi SM, Archer AC, Halami PM (2015) Screening, characterization and in vitro evaluation of probiotic properties among lactic acid bacteria through comparative analysis. Probiotics Antimicrob Proteins 7(3):181–192. doi: 10.1007/s12602-015-9195-5 PubMedCrossRefGoogle Scholar
  25. Dewan S, Tamang JP (2006) Microbial and analytical characterization of Chhu, a traditional fermented milk product of the Sikkim Himalayas. J Sci Ind Res 65:747–752Google Scholar
  26. Duggal RW, Harger NJ (2011) The safe and appropriate use of thrombolytics in the emergency department. US Pharm 36:11–16Google Scholar
  27. Eom JS, Song J, Choi HS (2015) Protective Effects of a Novel Probiotic Strain of Lactobacillus plantarum JSA22 from Traditional Fermented Soybean Food Against Infection by Salmonella enterica Serovar typhimurium. J Microbiol Biotechnol 25:479–491. doi: 10.4014/jmb.1501.01006 PubMedCrossRefGoogle Scholar
  28. Erdmann K, Cheung BWY, Schroder H (2008) The possible role of food derived bioactive peptides in reducing the risk of cardiovascular diseases. J Nutr Biochem 19:643–654. doi: 10.1016/j.jnutbio.2007.11.010 PubMedCrossRefGoogle Scholar
  29. Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, Gómez-Gracia E, Ruiz-Gutiérrez V, Fiol M, Lapetra J, Lamuela-Raventos RM (2013) Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 368(14):1279–1290. doi: 10.1056/NEJMoa1200303 PubMedCrossRefGoogle Scholar
  30. FAO/WHO (2002) Joint FAO/WHO (Food and Agriculture Organization/World Health Organization) working group report on drafting guidelines for the evaluation of probiotics in food. London, Ontario, CanadaGoogle Scholar
  31. Farhad M, Kailasapathy K, Tamang JP (2010) Health aspects of fermented foods. In: Tamang JP, Kailasapathy K (eds) Fermented foods and beverages of the world. CRC Press, Taylor & Francis Group, New York, pp 391–414CrossRefGoogle Scholar
  32. FitzGerald RJ, Murray BA, Walsh DJ (2004) Hypotensive peptides from milk protein. J Nutr 34:9805–9885Google Scholar
  33. Foschino R, Gallina S, Andrighetto C, Rossetti L, Galli A (2004) Comparisons of cultural methods for the identification and molecular investigations of yeasts from sourdoughs for Italian sweet baked products. FEMS Yeasts Res 4:609–618. doi: 10.1016/j.femsyr.2003.12.006 CrossRefGoogle Scholar
  34. Galdeano CM, Perdigon G (2006) Probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin Vaccine Immunol 13:219–226. doi: 10.1128/CVI.13.2.219-226.2006 PubMedCrossRefPubMedCentralGoogle Scholar
  35. Galle S, Schwab C, Dal Bello F, Coffey A, Ganzle MG, Arendt EK (2012) Influence of in-situ synthesized exopolysaccharides on the quality of gluten-free sorghum sourdough bread. Int J Food Microbiol 155:105–112PubMedCrossRefGoogle Scholar
  36. Gautam N, Sharma N (2015) Evaluation of probiotic potential of new bacterial strain, Lactobacillus spicheri G2 isolated from Gundruk. Proc Natl Acad Sci India Sect B Biol Sci 85(4):979–986. doi: 10.1007/s40011-014-0458-9 CrossRefGoogle Scholar
  37. Gautam N, Sharma N, Ahlawat OP (2014) Purification and characterization of bacteriocin produced by Lactobacillus brevis UN isolated from Dhulliachar: a traditional food product of north east India. Ind J Microbiol 54(2):185–189. doi: 10.1007/s12088-013-0427-7 CrossRefGoogle Scholar
  38. Ge J, Sun Y, Xin X, Wang Y, Ping W (2016) Purification and partial characterization of a novel bacteriocin synthesized by Lactobacillus paracasei HD1-7 isolated from Chinese sauerkraut juice. Sci Rep 6:19366. doi: 10.1038/srep19366 PubMedCrossRefPubMedCentralGoogle Scholar
  39. Gibbs BF, Zougman A, Masse R, Mulligan C (2004) Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Res Int 37:123–131. doi: 10.1016/j.foodres.2003.09.010 CrossRefGoogle Scholar
  40. Gill HS, Guarner F (2004) Probiotics and human health: a clinical perspective. Postgrad Med J 80:516–526. doi: 10.1136/pgmj.2003.008664 PubMedCrossRefPubMedCentralGoogle Scholar
  41. Gomathi S, Sasikumar P, Anbazhagan K, Sasikumar S, Kavitha M, Selvi MS, Selvam GS (2014) Screening of indigenous oxalate degrading lactic acid bacteria from human faeces and South Indian fermented foods: assessment of probiotic potential. Sci World J. doi: 10.1155/2014/648059
  42. Granier A, Goulet O, Hoarau C (2013) Fermentation products: immunological effects on human and animal models. Pediatr Res 74:238–244. doi: 10.1038/pr.2013.76 PubMedCrossRefGoogle Scholar
  43. Guandalini S, Pensabene L, Zikri MA, Dias JA, Casali LG, Hoekstra H, Kolacek S, Massar K et al (2000) Lactobacillus GG administered in oral rehydration solution to children with acute diarrhea: a multicenter European trial. J Pediatr Gastroenterol Nutr 30:54–60PubMedCrossRefGoogle Scholar
  44. Guslandi M, Mezzi G, Sorghi M, Testoni PAL (2000) Saccharomyces boulardii in maintenance treatment of Crohn’s disease. Dig Dis Sci 45:1462–1464PubMedCrossRefGoogle Scholar
  45. Guyot JP (2010) Fermented cereal products. In: Tamang JP, Kailasapathy K (eds) Fermented foods and beverages of the world. CRC Press, Taylor & Francis Group, New York, pp 247–261. doi: 10.1201/EBK1420094954-c8 CrossRefGoogle Scholar
  46. Han S, Kang G, Ko Y, Kang H, Moon S, Ann Y, Yoo E (2012a) Fermented fish oil suppresses T helper 1/2 cell response in a mouse model of atopic dermatitis via generation of CD4+CD25+Foxp3+ T cells. BMC Immunol 13:44. doi: 10.1186/1471-2172-13-44 PubMedCrossRefPubMedCentralGoogle Scholar
  47. Han S, Kang G, Ko Y, Kang H, Moon S, Ann Y, Yoo E (2012b) External application of fermented olive flounder (Paralicthys olivaceus) oil alleviates inflammatory responses in 2,4-dinitrochlorobenzene-induced atopic dermatitis mouse model. Toxicol Res 28(3):159–164. doi: 10.5487/TR.2012.28.3.159 PubMedCrossRefPubMedCentralGoogle Scholar
  48. Harun-ur-Rashid M, Togo K, Useda M, Miyamoto T (2007) Probiotic characteristics of lactic acid bacteria isolated from traditional fermented milk “Dahi” in Bangladesh. Pak J Nutr 6:647–652CrossRefGoogle Scholar
  49. Hertzler SR, Clancy SM (2003) Kefir improves lactose digestion and tolerance in adults with lactose maldigestion. J Am Diet Assoc 103:582–587PubMedCrossRefGoogle Scholar
  50. Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55:224–236. doi: 10.1016/j.phrs.2007.01.009 PubMedCrossRefPubMedCentralGoogle Scholar
  51. Hong W, Chen Y, Chen M (2010) The antiallergic effect of kefir Lactobacilli. J Food Sci 75(8):H244–H253PubMedCrossRefGoogle Scholar
  52. Horii M (2008) Tempeh. In: Kiuchi K, Nagai T, Kimura K (eds) Advanced science on natto. Kenpakusha, Tokyo, pp 234–237. (in Japanese)Google Scholar
  53. https://www.nlm.nih.gov/medlineplus/liverdiseases.html “Liver Diseases: MedlinePlus”. www.nlm.nih.gov. Retrieved 2016 May 3
  54. Huang Y, Wang X, Wang J, Wu F, Sui Y, Yang L et al (2013a) Lactobacillus plantarum strains as potential probiotic cultures with cholesterol-lowering activity. J Dairy Sci 95(5):2746–2753. doi: 10.3168/jds.2012-6123 CrossRefGoogle Scholar
  55. Huang Y, Wu F, Wang X, Sui Y, Yang L, Wang J (2013b) Characterization of Lactobacillus plantarum Lp27 isolated from Tibetan kefir grains: a potential probiotic bacterium with cholesterol-lowering effects. J Dairy Sci 96(5):2816–2825. doi: 10.3168/jds.2012-6371 PubMedCrossRefGoogle Scholar
  56. Hur YM, Kim SH, Choi YW, Park KY (2000) Inhibition of tumor formation and changes in hepatic enzyme activities by kimchi extracts in sarcoma 180 cell transplanted mice. J Food Sci Nutr 5:48–53Google Scholar
  57. Hutkins RW (2008) Microbiology and technology of fermented foods, vol 22. Wiley, HobokenGoogle Scholar
  58. Iwai K, Nakaya N, Kawasaki Y, Matsue H (2002) Antioxidative function of Natto, a kind of fermented soybeans: effect on LDL oxidation and lipid metabolism in cholesterol-fed rats. J Agric Food Chem 50:3597–3601. doi: 10.1021/jf0117199 PubMedCrossRefGoogle Scholar
  59. Jackson RS (2008) Wine science: principles and applications, 3rd edn. Academic Press, San Diego, pp 686–706CrossRefGoogle Scholar
  60. Jeong J, Junga H, Leea S, Leea H, Hwanga KT, Kimb T (2010) Anti-oxidant, anti-proliferative and anti-inflammatory activities of the extracts from black raspberry fruits and wine. Food Chem 123:338–344. doi: 10.1016/j.foodchem.2010.04.040 CrossRefGoogle Scholar
  61. Jeong YK, Yang WS, Kim KH, Chung KT, Joo WH, Kim JH, Kim DE, Park JU (2004) Purification of a fibrinolytic enzyme (myulchikinase) from pickled anchovy and its cytotoxicity to the tumor cell lines. Biotechnology letters 26(5):393–397Google Scholar
  62. Jeyaram J, Anand ST, Romi W, Ranjita DA, Mohendro SW, Dayanidhi H, Rajmuhon SN, Tamang JP (2009) Traditional fermented foods of Manipur. Indian J Tradit Knowl 8(1):115–121Google Scholar
  63. Jiang J, Shi B, Zhu D, Cai Q, Chen Y, Li J, Qi K, Zhang M (2012) Characterization of a novel bacteriocin produced by Lactobacillus sakei LSJ618 isolated from traditional Chinese fermented radish. Food Control 23:338–344. doi: 10.1016/j.foodcont.2011.07.027 CrossRefGoogle Scholar
  64. Johanningsmeier S, McFeeters RF, Fleming HP, Thompson RL (2007) Effects of Leuconostoc mesenteroides starter culture on fermentation of cabbage with reduced salt concentrations. J Food Sci 72:M166–M172. doi: 10.1111/j.1750-3841.2007.00372.x PubMedCrossRefGoogle Scholar
  65. Jung JY, Lee SH, Kim JM, Park MS, Bae JW, Hahn Y, Madsen EL, Jeon CO (2011) Metagenomic analysis of kimchi, a traditional Korean fermented food. Appl Environ Microbiol 77:2264–2274. doi: 10.1128/AEM.02157-10 PubMedCrossRefPubMedCentralGoogle Scholar
  66. Juntunen KS, Mazur WM, Liukkonen KH, Uehara M, Poutanen KS, Adlercreutz HC, Mykkanen HM (2000) Consumption of wholemeal rye bread increases serum concentrations and urinary excretion of enterolactone compared with consumption of white wheat bread in healthy Finnish men and women. Br J Nutr 84:839–846PubMedGoogle Scholar
  67. Kadooka Y, Sato M, Imaizumi K, Ogawa A, Ikuyama K, Akai Y et al (2010) Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr 64(6):636–643PubMedCrossRefGoogle Scholar
  68. Kammerer D, Claus A, Carle R, Schieber A (2004) Polyphenol screening of pomace from red and white grape varieties (Vitis vinifera L.) by HPLC-DAD-MS/MS. J Agric Food Chem 52(14):4360–4367PubMedCrossRefGoogle Scholar
  69. Kashket S, DePaola DP (2002) Cheese consumption and the development and progression of dental caries. Nutr Rev 60(4):97–103. doi: 10.1301/00296640260085822 PubMedCrossRefGoogle Scholar
  70. Kawakami Y, Tsurugasaki W, Nakamura S, Osada K (2005) Comparison of regulative functions between dietary soy isoflavones aglycone and glucoside on lipid metabolism in rats fed cholesterol. J Nutr Biochem 16(4):205–212. doi: 10.1016/j.jnutbio.2004.11.005 PubMedCrossRefGoogle Scholar
  71. Kawashima T, Hayashi K, Kosaka A, Kawashima M, Igarashi T, Tsutsui H, Tsuji NM, Nishimura I, Hayashi T, Obata A (2011) Lactobacillus plantarum strain YU from fermented foods activates Th1 and protective immune responses. Int Immunopharmacol 11(12):2017–2024. doi: 10.1016/j.intimp.2011.08.013 PubMedCrossRefGoogle Scholar
  72. Ki MR, Ghim SY, Hong IH, Park JK, Hong KS, Ji AR, Jeong KS (2010) In vitro inhibition of Helicobacter pylori growth and of adherence of cagA-positive strains to gastric epithelial cells by Lactobacillus paraplantarum KNUC25 isolated from kimchi. J Med Food 13(3):629–634. doi: 10.1089/jmf.2009.1265 PubMedCrossRefGoogle Scholar
  73. Kim W, Choi K, Kim Y (1996) Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Appl Environ Microbiol 62:2482–2488PubMedPubMedCentralGoogle Scholar
  74. Kim MJ, Kwon MJ, Song YO, Lee EK, Yoon HJ, Song YS (1997) The effects of kimchi on hematological and immunological parameters in vivo and in vitro. J Food Sci Nutr 26:1208–1214Google Scholar
  75. Kim KH, Kim SH, Park KY (2001) Effects of kimchi extracts on production of nitric oxide by activated macrophages, transforming growth factor b1 of tumor cells and interleukin-6 in splenocytes. J Food Sci Nutr 6:126–132Google Scholar
  76. Kim JH, Ryu JD, Lee HG, Park JH, Moon GS, Cheigh HS, Song YO (2002a) The effect of kimchi on production of free radicals and anti-oxidative enzyme activities in the brain of SAM. J Kor Soc Food Sci Nutr 31:117–123CrossRefGoogle Scholar
  77. Kim JH, Ryu JD, Song YO (2002b) The effect of kimchi intake on free radical production and the inhibition of oxidation in young adults and the elderly people. Korean J Community Nutr 7:257–265Google Scholar
  78. Kim NH, Moon PD, Kim SJ, Choi IY, An HJ, Myung NY, Jeong HJ, Um JY, Hong SH, Kim HM (2008) Lipid profile lowering effect of Soypro™ fermented with lactic acid bacteria isolated from Kimchi in high-fat diet-induced obese rats. Biofactors 33(1):49–60PubMedCrossRefGoogle Scholar
  79. Kim EK, An SY, Lee MS, Kim TH, Lee HK, Hwang WS et al (2011) Fermented kimchi reduces body weight and improves metabolic parameters in overweight and obese patients. Nutr Res 31:436–443. doi: 10.1016/j.nutres.2011.05.011 PubMedCrossRefGoogle Scholar
  80. Kim JY, Park BK, Park HJ, Park YH, Kim BO, Pyo S (2013) Atopic dermatitis-mitigating effects of new Lactobacillus strain, Lactobacillus sakei probio 65 isolated from kimchi. J Appl Microbiol 115:517–526PubMedCrossRefGoogle Scholar
  81. King S, Glanville J, Sanders ME, Fitzgerald A, Varley D (2014) Effectiveness of probiotics on the duration of illness in healthy children and adults who develop common acute respiratory infectious conditions: a systematic review and meta-analysis. Br J Nutr 112(01):41–54. doi: 10.1017/S0007114514000075 PubMedCrossRefPubMedCentralGoogle Scholar
  82. Kiessling G, Schneider J, Jahreis G (2002) Long-term consumption of fermented dairy products over 6 months increases HDL cholesterol. Eur J Clin Nutr 56(9):843–849PubMedCrossRefGoogle Scholar
  83. Kiriakidis S, Stathi S, Jha HC, Hartmann R, Egge H (1997) Fatty acid esters of sitosterol 3β-glucoside from soybeans and tempe (fermented soybeans) as antiproliferative substances. J Clin Biochem Nutr 22:139–147. doi: 10.3164/jcbn.22.139 CrossRefGoogle Scholar
  84. Kobayashi M (2005) Immunological functions of soy sauce: Hypoallergenicity and antiallergic activity of soy sauce. J Biosci Bioeng 100:144–151. doi: 10.1263/jbb.100.144 PubMedCrossRefGoogle Scholar
  85. Kobayashi T, Kimura B, Fujii T (2000b) Haloanaerobium fermentans sp. nov., a strictly anaerobic, fermentative halophile isolated from fermented puffer fish ovaries. Int J Syst Evol Microbiol 50:1621–1627. doi: 10.1099/00207713-50-4-1621 PubMedCrossRefGoogle Scholar
  86. Kotb E (2012) Fibrinolytic bacterial enzymes with thrombolytic activity. Springer, Berlin, pp 1–74. doi: 10.1007/978-3-642-24980-8_1 CrossRefGoogle Scholar
  87. Kumar RS, Kanmani P, Yuvaraj N, Paari KA, Pattukumar V, Thirunavukkarasu C, Arul V (2012) Lactobacillus plantarum AS1 isolated from south Indian fermented food Kallappam suppress 1, 2-dimethyl hydrazine (DMH)-induced colorectal cancer in male Wistar rats. Appl Biochem Biotechnol 166(3):620–631. doi: 10.1007/s12010-011-9453-2 PubMedCrossRefGoogle Scholar
  88. Kumar M, Verma V, Nagpal R, Kumar A, Behare PV, Singh B, Aggarwal PK (2012) Anticarcinogenic effect of probiotic fermented milk and chlorophyllin on aflatoxin-B1-induced liver carcinogenesis in rats. Br J Nutr 107:1006–1016. doi: 10.1017/S0007114511003953 PubMedCrossRefGoogle Scholar
  89. Kwak CS, Park S, Song KY (2012) Doenjang, a fermented soybean paste, decreased visceral fat accumulation and adipocyte size in rats fed with high fat diet more effectively than nonfermented soybeans. J Med Food 15:1–9. doi: 10.1089/jmf.2010.1224 PubMedCrossRefGoogle Scholar
  90. Kwak SH, Cho YM, Noh GM, Om AS (2014) Cancer preventive potential of kimchi lactic acid bacteria (Weissella cibaria, Lactobacillus plantarum). J Cancer Prev 19(4):253–258. doi: 10.15430/JCP.2014.19.4.253 PubMedCrossRefPubMedCentralGoogle Scholar
  91. Kwon DY, Jang JS, Hong SM, Lee JE, Sung SR, Park HR, Park S (2007) Long-term consumption of fermented soybean-derived Chungkookjang enhances insulinotropic action unlike soybeans in 90% pancreatectomized diabetic rats. Eur J Nutr 46(1):44–52. doi: 10.1007/s00394-006-0630-y PubMedCrossRefGoogle Scholar
  92. Kwon DY, Hong SM, Ahn IS, Kim YS, Shin DW, Park S (2009a) Kochujang, a Korean fermented red pepper plus soybean paste, improves glucose homeostasis in 90% pancreatectomized diabetic rats. Nutrition 25(7):790–799. doi: 10.1016/j.nut.2008.12.006 PubMedCrossRefGoogle Scholar
  93. Kwon GH, Lee HA, Park JY, Kim JS, Lim J, Park CS, Kwon DY, Kim JH (2009b) Development of a RAPD-PCR method for identification of Bacillus species isolated from Cheonggukjang. Int J Food Microbiol 129:282–287. doi: 10.1016/j.ijfoodmicro.2008.12.013 PubMedCrossRefGoogle Scholar
  94. Kwon DY, Daily JW, Kim HJ, Park S (2010) Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutr Res 30(1):1–13. doi: 10.1016/j.nutres.2009.11.004 PubMedCrossRefGoogle Scholar
  95. de LeBlanc ADM, Matar C, Farnworth E, Perdigon G (2007) Study of immune cells involved in the antitumor effect of kefir in a murine breast cancer model. J Dairy Sci 90(4):1920–1928. doi: 10.3168/jds.2006-079 CrossRefGoogle Scholar
  96. Lee HR, Lee JM (2009) Anti-stress effects of kimchi. Food Sci Biotechnol 18(1):25–30Google Scholar
  97. Lee JW, Shin JG, Kim EH, Kang HE, Yim IB, Kim JY, Joo HG, Woo HJ (2004) Immunomodulatory and antitumor effects in vivo by the cytoplasmic fraction of Lactobacillus casei and Bifidobacterium longum. J Vet Sci 5:41–48PubMedGoogle Scholar
  98. Lee JH, Kweon DH, Lee SC (2006) Isolation and characterization of an immunopotentiating factor from Lactobacillus plantarum in kimchi: assessment of immunostimulatory activities. Food Sci Biotechnol 15:877–883Google Scholar
  99. Lee Y, Lee HJ, Lee H-S, Jang Y-A, Kim C-I (2008) Analytical dietary fiber database for the National Health and Nutrition Survey in Korea. J Food Compos Anal 21:S35–S42. doi: 10.1016/j.jfca.2007.07.008 CrossRefGoogle Scholar
  100. Lee H, Yoon H, Ji Y, Kim H, Park H, Lee J, Shin H, Holzapfel WH (2011) Functional properties of Lactobacillus strains isolated from kimchi. Int J Food Microbiol 145:155–161. doi: 10.1016/j.ijfoodmicro.2010.12.003 PubMedCrossRefGoogle Scholar
  101. Lee SY, Song YO, Han ES, Han JS (2012) Comparative study on dietary habits, food intakes, and serum lipid levels according to kimchi consumption in college students. J Korean Soc Food Sci Nutr 41:351–361. doi: 10.3746/jkfn.2012.41.3.351 CrossRefGoogle Scholar
  102. Leroy F, Verluyten J, De Vuyst L (2006) Functional meat starter cultures for improved sausage fermentation. Int J Food Microbiol 106:270–285. doi: 10.1016/j.ijfoodmicro.2005.06.027 PubMedCrossRefGoogle Scholar
  103. Li S, Zhao Y, Zhang L, Zhang X, Huang L, Li D, Niu C, Yang Z, Wang Q (2012) Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem 135(3):1914–1919. doi: 10.1016/j.foodchem.2012.06.048 PubMedCrossRefGoogle Scholar
  104. Li M, Yang D, Mei L, Yuan L, Xie A, Yuan J (2014) Screening and characterization of purine nucleoside degrading lactic acid bacteria isolated from Chinese sauerkraut and evaluation of the serum uric acid lowering effect in hyperuricemic rats. PLoS One 9(9):e105577. doi: 10.1371/journal.pone.0105577 PubMedCrossRefPubMedCentralGoogle Scholar
  105. Lim J, Seo BJ, Kim JE, Chae CS, Im SH, Hahn YS, Park YH (2011) Characteristics of immunomodulation by a Lactobacillus sakei proBio65 isolated from Kimchi. Korean J Microbiol Biotechnol 39:313–316Google Scholar
  106. Lomer MCE, Parkes GC, Sanderson JD (2008) Review article: lactose intolerance in clinical practice–myths and realities. Aliment Pharmacol Ther 27(2):93–103PubMedCrossRefGoogle Scholar
  107. Longo MA, Sanromán MA (2006) Production of food aroma compounds: microbial and enzymatic methodologies. Food Technol Biotechnol 44:335–353Google Scholar
  108. Lu Y, Wang W, Shan Y, Zhiqiang E, Wang L (2009) Study on the inhibition of fermented soybean to cancer cells. J Northeast Agric Univ 16(1):25–28Google Scholar
  109. Luoto RM, Kinnunen TI, Aittasalo M, Ojala K, Mansikkamäki K, Toropainen E, Kolu P, Vasankari T (2010) Prevention of gestational diabetes: design of a cluster-randomized controlled trial and one-year follow-up. BMC Pregnancy Childbirth 10(1):1. doi: 10.1186/1471-2393-10-39 CrossRefGoogle Scholar
  110. MacFarlane GT, Cummings JH (2002) Probiotics, infection and immunity. Curr Opin Infect Dis 15:501–506PubMedCrossRefGoogle Scholar
  111. Mack DR, Michail S, Wet S (1999) Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am J Phys 276:G941–G950Google Scholar
  112. Marette A, Picard-Deland E (2014) Yogurt consumption and impact on health: focus on children and cardiometabolic risk. Am J Clin Nutr 99(5):1243S–1247S. doi: 10.3945/ajcn.113.073379 PubMedCrossRefGoogle Scholar
  113. Marteau P, deVrese M, Cellier CJ, Schrezenmeir J (2001) Protection from gastrointestinal diseases with the use of probiotics. Am J Clin Nutr 73:430S–436SPubMedGoogle Scholar
  114. Marteau P, Seksik P, Jian R (2002) Probiotics and intestinal health effects: A clinical perspective. Br J Nutr 88:51–57. doi: 10.1079/BJN2002629 CrossRefGoogle Scholar
  115. Martinez-Villaluenga C, Peñas E, Sidro B, Ullate M, Frias J, Vidal-Valverde C (2012) White cabbage fermentation improves ascorbigen content, antioxidant and nitric oxide production inhibitory activity in LPS-induced macrophages. LWT Food Sci Technol 46:77–83. doi: 10.1016/j.lwt.2011.10.023 CrossRefGoogle Scholar
  116. Mathara JM, Schillinger U, Kutima PM, Mbugua SK, Holzapfel WH (2004) Isolation, identification and characterisation of the dominant microorganisms of kule naoto: the Maasai traditional fermented milk in Kenya. Int J Food Microbiol 94:269–278. doi: 10.1016/j.ijfoodmicro.2004.01.008 PubMedCrossRefGoogle Scholar
  117. Matricardi PM (2002) Probiotics against allergy: data, doubts, and perspectives. Allergy 57(3):185–187. doi: 10.1034/j.1398-9995.2002.1a3299.x PubMedCrossRefGoogle Scholar
  118. Mercenier A, Muller-Alouf H, Grangette C (2000) Lactic acid bacteria as live vaccines. Curr Issues Mol Biol 2:17–25PubMedGoogle Scholar
  119. Meyer K, Kushi L, Jacobs D, Slavin J, Sellers T, Folsom A (2000) Carbohydrates, dietary fiber, and incidence of type 2 diabetes in older women. Am J Clin Nutr 71:921–930PubMedGoogle Scholar
  120. Mine Y, Wong AHK, Jiang B (2005) Fibrinolytic enzymes in Asian traditional fermented foods. Food Res Int 38:243–250CrossRefGoogle Scholar
  121. Mo H, Zhu Y, Chen Z (2008) Microbial fermented tea—a potential source of natural food preservatives. Trends Food Sci Technol 19:124–130CrossRefGoogle Scholar
  122. Mohania D, Kansal VK, Sagwal R, Shah D (2013) Anticarcinogenic effect of probiotic dahi and piroxicam on DMH-induced colorectal carcinogenesis in Wistar rats. Am J Cancer Ther Pharmacol 1(1):8–24Google Scholar
  123. Moktan B, Saha J, Sarkar PK (2008) Antioxidant activities of soybean as affected by Bacillus-fermentation to Kinema. Food Res Int 4(6):586–593CrossRefGoogle Scholar
  124. Moon YJ, Soh JR, Yu JJ, Sohn HS, Cha YS, Oh SH (2012) Intracellular lipid accumulation inhibitory effect of Weissella koreensis OK1-6 isolated from Kimchi on differentiating adipocyte. J Appl Microbiol 113:652–658. doi: 10.1111/j.1365-2672.2012.05348.x PubMedCrossRefGoogle Scholar
  125. Morelli L (2014) Yogurt, living cultures, and gut health. Am J Clin Nutr 99(5):1248S–1250S. doi: 10.3945/ajcn.113.073072 PubMedCrossRefGoogle Scholar
  126. Mugula JK, Ninko SAM, Narvhus JA, Sorhaug T (2003) Microbiological and fermentation characteristics of togwa, a Tanzanian fermented food. Int J Food Microbiol 80:187–199PubMedCrossRefGoogle Scholar
  127. Nagai T, Tamang JP (2010) Fermented soybeans and non-soybeans legume foods. In: Tamang JP, Kailasapathy K (eds) Fermented Foods and Beverages of the World. CRC Press, Taylor & Francis Group, New York, pp 191–224CrossRefGoogle Scholar
  128. Nguyen DTL, Van Hoorde K, Cnockaert M, de Brandt E, de Bruyne K, Le BT, Vandamme P (2013a) A culture-dependent and -independent approach for the identification of lactic acid bacteria associated with the production of nem chua, a Vietnamese fermented meat product. Food Res Int 50(1):232–240CrossRefGoogle Scholar
  129. Noh KA, Kim DH, Choi NS, Kim SH (1999) Isolation of fibrinolytic enzyme producing strains from kimchi. Korean J Food Sci Technol 31:219–223Google Scholar
  130. Oguntoyinbo FA, Tourlomousis P, Gasson MJ, Narbad A (2011) Analysis of bacterial communities of traditional fermented West African cereal foods using culture independent methods. Int J Food Microbiol 145:205–210. doi: 10.1016/j.ijfoodmicro.2010.12.025 PubMedCrossRefGoogle Scholar
  131. Oki K, Rai AK, Sato S, Watanabe K, Tamang JP (2011) Lactic acid bacteria isolated from ethnic preserved meat products of the Western Himalayas. Food Microbiol 28:1308–1315. doi: 10.1016/j.fm.2011.06.001 PubMedCrossRefGoogle Scholar
  132. Omizu Y, Tsukamoto C, Chettri R, Tamang JP (2011) Determination of saponin contents in raw soybean and fermented soybean foods of India. J Sci Ind Res 70:533–538Google Scholar
  133. Otes S, Cagindi O (2003) Kefir: a probiotic dairy-composition, nutritional and therapeutic aspects. Pak J Nutr 2:54–59CrossRefGoogle Scholar
  134. Ouwehand AC, Röytiö H (2014) Probiotic fermented foods and health promotion. In: Holzapfel W (ed) Advances in fermented foods and beverages: improving quality, technologies and health benefits. Elsevier, AmsterdamGoogle Scholar
  135. Ouwehand AC, Salminen S, Isolauri E (2002) Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek 82:279–289. doi: 10.1023/A:1020620607611 PubMedCrossRefGoogle Scholar
  136. Palaniswamy SK, Govindaswamy V (2016) In-vitro probiotic characteristics assessment of feruloyl esterase and glutamate decarboxylase producing Lactobacillus spp. isolated from traditional fermented millet porridge (kambu koozh). LWT Food Sci Technol 68:208–216. doi: 10.1016/j.lwt.2015.12.024 CrossRefGoogle Scholar
  137. Park C, Choi JC, Choi YH, Nakamura H, Shimanouchi K, Horiuchi T, Misono H, Sewaki T, Soda K, Ashiuchi M, Sung MH (2005) Synthesis of super-high-molecular-weight poly-γ-glutamic acid by Bacillus subtilis subsp. chungkookjang. J Mol Catal B Enzym 35:128–133. doi: 10.1016/j.molcatb.2005.06.007 CrossRefGoogle Scholar
  138. Park KY, Kim BK (2010) Kimchi lactic acid bacteria and health benefits. FASEB J 24: (Meeting Abstract Supplement) No. 340.6Google Scholar
  139. Park JM, Shin JH, Lee DW, Song JC, Suh HJ, Chang UJ, Kim JM (2010) Identification of the lactic acid bacteria in kimchi according to initial and over-ripened fermentation using PCR and 16S rRNA gene sequence analysis. Food Sci Biotechnol 19:541–546. doi: 10.1007/s10068-010-0075-1 CrossRefGoogle Scholar
  140. Park JM, Shin JH, Gu JG, Yoon SJ, Song JC, Jeon WM, Suh HJ, Chang UJ, Yang CY, Kim JM (2011) Effect of antioxidant activity in kimchi during a short-term and over-ripening fermentation period. J Biosci Bioeng 112:356–359. doi: 10.1016/j.jbiosc.2011.06.003 PubMedCrossRefGoogle Scholar
  141. Park JA, TirupathiPichiah PB, Yu JJ, Oh SH, Daily JW 3rd, Cha YS (2012) Anti-obesity effect of kimchi fermented with Weissella koreensis OK1–6 as starter in high-fat diet-induced obese C57BL/6 J mice. J Appl Microbiol 113:1507–1516. doi: 10.1111/jam.12017 PubMedCrossRefGoogle Scholar
  142. Park KY, Jeong JK, Lee YE, Daily JW 3rd (2014) Health benefits of kimchi (Korean fermented vegetables) as a probiotic food. J Med Food 17(1):6–20. doi: 10.1089/jmf.2013.3083 PubMedCrossRefGoogle Scholar
  143. Parvez S, Malik KA, Ah Kang S, Kim HY (2006) Probiotics and their fermented food products are beneficial for health. J Appl Microbiol 100:1171–1185. doi: 10.1111/j.1365-2672.2006.02963.x PubMedCrossRefGoogle Scholar
  144. Patrignani F, Lanciotti R, Mathara JM, Guerzoni ME, Holzapfel WH (2006) Potential of functional strains, isolated from traditional Maasai milk, as starters for the production of fermented milks. Int J Food Microbiol 107:1–11. doi: 10.1016/j.ijfoodmicro.2005.08.004 PubMedCrossRefGoogle Scholar
  145. Pattanagul P, Pinthong R, Phianmongkhol A, Tharatha S (2008) Mevinolin, citrinin and pigments of adlay angkak fermented by Monascus sp. Int J Food Microbiol 126(1):20–23. doi: 10.1016/j.ijfoodmicro.2008.04.019 PubMedCrossRefGoogle Scholar
  146. Peng Y, Huang Q, Zhang R, Zhang Y (2003) Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comp Biochem Physiol B Biochem Mol Biol 134:45–52. doi: 10.1016/S1096-4959(02)00183-5 PubMedCrossRefGoogle Scholar
  147. Pereira MA, Jacobs DR Jr, Pins JJ, Raatz SK, Gross MD (2002) Effect of whole grains on insulin sensitivity in overweight hyper insulinemic adults. Am J Clin Nutr 75:848–855PubMedGoogle Scholar
  148. Pessi T, Sutas Y, Hurme M, Isolauri E (2000) Interleukin-10 generation in atopic children following oral Lactobacillus rhamnosus GG. Clin Exp Allergy 30:1804–1808. doi: 10.1046/j.1365-2222.2000.00948.x PubMedCrossRefGoogle Scholar
  149. Plengvidhya V, Breidt F, Fleming HP (2007) Use of RAPD-PCR as a method to follow the progress of starter cultures in sauerkraut fermentation. Int J Food Microbiol 93:287–296. doi: 10.1016/j.ijfoodmicro.2003.11.010 CrossRefGoogle Scholar
  150. Praveesh BV, Angayarkanni J, Palaniswamyint M (2011) Antihypertensive and anticancer effect of cow milk fermented by Lactobacillus plantarum and Lactobacillus casei. J Pharm Pharm Sci 3(5):452–456Google Scholar
  151. Prentice AM (2014) Dairy products in global public health. Am J Clin Nutr 99(5):1212S–1216S. doi: 10.3945/ajcn.113.073437 PubMedCrossRefGoogle Scholar
  152. Purchiaroni F, Tortora A, Gabrielli M, Bertucci F, Gigante G, Ianiro G et al (2013) The role of intestinal microbiota and the immune system. Eur Rev Med Pharmacol Sci 17(3):323–333PubMedGoogle Scholar
  153. Pussinen PJ, Havulinna AS, Lehto M, Sundvall J, Salomaa V (2011) Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care 34(2):392–397. doi: 10.2337/dc10-1676 PubMedCrossRefPubMedCentralGoogle Scholar
  154. Raghavendra P, Rao T, Halami P (2010) Evaluation of beneficial attributes for phytate-degrading Pediococcus pentosaceus CFR R123. Benef Microbes 1(3):259–264. doi: 10.3920/BM2009.0042 PubMedCrossRefGoogle Scholar
  155. Rai AK, Palni U, Tamang JP (2010) Microbiological studies of ethnic meat products of the Eastern Himalayas. Meat Sci 85:560–567. doi: 10.1016/j.meatsci.2010.03.006 PubMedCrossRefGoogle Scholar
  156. Ramadori G, Gautron L, Fujikawa T, Claudia R, Vianna J, Elmquist E, Coppari R (2009) Central administration of resveratrol improves diet-induced diabetes. Endocrinology 150:5326–5333. doi: 10.1210/en.2009-0528 PubMedCrossRefPubMedCentralGoogle Scholar
  157. Rapsang GF, Joshi SR (2015) Molecular and probiotic functional characterization of Lactobacillus spp. associated with traditionally fermented fish, Tungtap of Meghalaya in Northeast India. Proc Natl Acad Sci India Sect B Biol Sci 85(4):923–933. doi: 10.1007/s40011-013-0234-2 CrossRefGoogle Scholar
  158. Ratanaburee A, Kantachote D, Charernjiratrakul W, Sukhoom A (2013) Selection of γ-aminobutyric acid-producing lactic acid bacteria and their potential as probiotics for use as starter cultures in Thai fermented sausages (Nham). Int J Food Sci Technol 48(7):1371–1382. doi: 10.1111/ijfs.12098 CrossRefGoogle Scholar
  159. Rhee SH, Kong KR, Jung KO, Park KY (2003) Decreasing effect of Kochujang on body weight and lipid levels of adipose tissues and serum in rats fed a high-fat diet. J Korean Soc Food Sci Nutr 32:882–886CrossRefGoogle Scholar
  160. Rho SJ, Lee JS, Chung YL, Kim YW, Lee HG (2009) Purification and identification of an angiotensing I-converting enzyme inhibitory peptide from fermented soybean extract. Process Biochem 44:490–493. doi: 10.1016/j.procbio.2008.12.017 CrossRefGoogle Scholar
  161. Rolfe RD (2000) The role of probiotic cultures in the control of gastrointestinal health. J Nutr 130:396S–402SPubMedGoogle Scholar
  162. Rowland I (2004) Probiotics and colorectal cancer risk. Br J Nutr 91:805–807. doi: 10.1079/BJN20041161 PubMedCrossRefGoogle Scholar
  163. Rubia-Soria A, Abriouel H, Lucas R, Omar NB, Martinez-Caõamero M, Gálvez A (2006) Production of antimicrobial substances by bacteria isolated from fermented table olives. World J Microbiol Biotechnol 22(7):765–768. doi: 10.1007/s11274-005-9101-5 CrossRefGoogle Scholar
  164. Rühmkorf C, Jungkunz S, Wagner M, Vogel RF (2012) Optimization of homoexopolysaccharide formation by lactobacilli in gluten-free sourdoughs. Food Microbiol 32:286–294. doi: 10.1016/j.fm.2012.07.002 PubMedCrossRefGoogle Scholar
  165. Ryu BM, Ryu SH, Jeon YS, Lee YS, Moon GS (2004a) Inhibitory effect of solvent fraction of various kinds of kimchi on ultraviolet B induced oxidation and erythema formation of hairless mice skin. J Kor Soc Food Sci Nutr 33:785–790CrossRefGoogle Scholar
  166. Ryu BM, Ryu SH, Lee YS, Jeon YS, Moon GS (2004b) Effect of different kimchi diets on oxidation and photooxidation in liver and skin of hairless mice. J Korean Soc Food Sci Nutri 33:291–298CrossRefGoogle Scholar
  167. Sabeena FKH, Baron CP, Nielsen NS, Jacobsen C (2010) Antioxidant activity of yoghurt peptides: Part 1-in vitro assays and evaluation in ω-3 enriched milk. Food Chem 123:1081–1089. doi: 10.1016/j.foodchem.2010.05.067 CrossRefGoogle Scholar
  168. Saikali J, Picard V, Freitas M, Holt P (2004) Fermented milks, probiotic cultures, and colon cancer. Nutr Cancer 49:14–24. doi: 10.1207/s15327914nc4901_3 PubMedCrossRefGoogle Scholar
  169. Saithong P, Panthavee W, Boonyaratanakornkit M, Sikkhamondhol C (2010) Use of a starter culture of lactic acid bacteria in plaa-som, a Thai fermented fish. J Biosci Bioeng 110:553–557. doi: 10.1016/j.jbiosc.2010.06.004 PubMedCrossRefGoogle Scholar
  170. Sanders ME, Klaenhammer TR (2001) Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J Dairy Sci 84:319–331. doi: 10.3168/jds.S0022-0302(01)74481-5 PubMedCrossRefGoogle Scholar
  171. Sanz Y, Rastmanesh R, Agostonic C (2013) Understanding the role of gut microbes and probiotics in obesity: how far are we? Pharm Res 69(1):144–155. doi: 10.1016/j.phrs.2012.10.021 CrossRefGoogle Scholar
  172. Sapbamrer R, Visavarungroj N, Suttajit M (2013) Effects of dietary traditional fermented soybean on reproductive hormones, lipids, and glucose among postmenopausal women in northern Thailand. Asia Pac J Clin Nutr 22(2):222PubMedGoogle Scholar
  173. Sarkar S (2008) Innovations in Indian fermented milk products—a review. Food Biotechnol 22(1):78–97. doi: 10.1080/08905430701864025 CrossRefGoogle Scholar
  174. Sarkar PK, Hasenack B, Nout MJR (2002) Diversity and functionality of Bacillus and related genera isolated from spontaneously fermented soybeans (Indian Kinema) and locust beans (African Soumbala). Int J Food Microbiol 77:175–186. doi: 10.1016/S0168-1605(02)00124-1 PubMedCrossRefGoogle Scholar
  175. Schillinger U, Ban-Koffi L, Franz CMAP (2010) Tea, coffee and cacao. In: Tamang JP, Kailasapathy K (eds) Fermented foods and beverages of the world. CRC Press, Taylor & Francis Group, New York, pp 353–375CrossRefGoogle Scholar
  176. Sengun IY, Nielsen DS, Karapinar M, Jakobsen M (2009) Identification of lactic acid bacteria isolated from Tarhana, a traditional Turkish fermented food. Int J Food Microbiol 135:105–111. doi: 10.1016/j.ijfoodmicro.2009.07.033 PubMedCrossRefGoogle Scholar
  177. Shah NP (1993) Effectiveness of dairy products in alleviation of lactose intolerance. Food Australia 45:268–271Google Scholar
  178. Shah NP (2004) Probiotics and prebiotics. Agro Food Industry HiTech 15(1):13–16Google Scholar
  179. Shah NP, da Cruz AG, Faria JAF (eds) (2013) Probiotics and probiotic foods: technology, stability and benefits to human health. Nova Science Publishers, New YorkGoogle Scholar
  180. Shin SK, Kwon JH, Jeon M, Choi J, Choi MS (2011) Supplementation of Cheonggukjang and Red Ginseng Cheonggukjang can improve plasma lipid profile and fasting blood glucose concentration in subjects with impaired fasting glucose. J Med Food 14:108–113. doi: 10.1089/jmf.2009.1366 PubMedCrossRefGoogle Scholar
  181. Shobharani P, Halami PM (2015) In vitro evaluation of the cholesterol-reducing ability of a potential probiotic Bacillus spp. Ann Microbiol:1–9. doi: 10.1007/s13213-015-1146-6
  182. Shon M-Y, Lee J, Choi J-H, Choi S-Y, Nam S-H, Seo K-I, Lee S-W, Sung N-J, Park S-K (2007) Antioxidant and free radical scavenging activity of methanol extract of chungkukjang. J Food Compos Anal 20:113–118. doi: 10.1016/j.jfca.2006.08.003 CrossRefGoogle Scholar
  183. Sim KH, Han YS (2008) Effect of red pepper seed on kimchi antioxidant activity during fermentation. Food Sci Biotechnol 17(2):295–301Google Scholar
  184. Singh TA, Devi KR, Ahmed G, Jeyaram K (2014) Microbial and endogenous origin of fibrinolytic activity in traditional fermented foods of Northeast India. Food Res Int 55:356–362. doi: 10.1016/j.foodres.2013.11.028 CrossRefGoogle Scholar
  185. Solga SF (2003) Probiotics can treat hepatic encephalopathy. Med Hypotheses 61:307–313. doi: 10.1016/S0306-9877(03)00192-0 PubMedCrossRefGoogle Scholar
  186. Sonar RN, Halami PM (2014) Phenotypic identification and technological attributes of native lactic acid bacteria present in fermented bamboo shoot products from North-East India. J Food Sci Technol. doi: 10.1007/s13197-014-1456-x
  187. Song HS, Kim YM, Lee KT (2008) Antioxidant and anticancer activities of traditional Kochujang added with garlic porridge. J Life Sci 18(8):1140–1146. doi: 10.5352/JLS.2008.18.8.1140 CrossRefGoogle Scholar
  188. Song YR, Song NE, Kim JH, Nho YC, Baik SH (2011) Exopolysaccharide produced by Bacillus licheniformis strains isolated from Kimchi. J Gen Appl Microbiol 57(3):69–175. 10.2323/jgam.57.169 CrossRefGoogle Scholar
  189. Sridevi J, Halami PM, Vijayendra SVN (2010) Selection of starter cultures for idli batter fermentation and their effect on quality of idli. J Food Sci Technol 47:557–563. doi: 10.1007/s13197-010-0101-6 PubMedCrossRefPubMedCentralGoogle Scholar
  190. Stevens HC, Nabors L (2009) Microbial food cultures: a regulatory update. Food Technol (Chicago) 63:36–41Google Scholar
  191. Sumi H, Nakajima N, Yatagai C (1995) A unique strong fibrinolytic enzyme (katsuwokinase) in skipjack “shiokara”, a Japanese traditional fermented food. Comp Biochem Physiol Biochem Mol Biol 112:543–547. doi: 10.1016/0305-0491(95)00100-X CrossRefGoogle Scholar
  192. Sun YP, Chou CC, Yu RC (2009) Antioxidant activity of lactic-fermented Chinese cabbage. Food Chem 115(3):912–917. doi: 10.1016/j.foodchem.2008.12.097 CrossRefGoogle Scholar
  193. Sun Z, Liu W, Gao W, Yang M, Zhang J, Wang J, Menghe B, Sun T, Zhang H (2010) Identification and characterization of the dominant lactic acid bacteria from kurut: The naturally fermented yak milk in Qinghai, China. J Gen Appl Microbiol 56:1–10. doi: 10.2323/jgam.56.1 PubMedCrossRefGoogle Scholar
  194. Svetkey LP, Simons-Morton D, Vollmer WM, Appel LJ, Conlin PR, Ryan DH, Ard J, Kennedy BM (1999) Effects of dietary patterns on blood pressure: subgroup analysis of the Dietary Approaches to Stop Hypertension (DASH) randomized clinical trial. Arch Intern Med 159(3):285–293. doi: 10.1001/archinte.159.3.285 PubMedCrossRefGoogle Scholar
  195. Swallow DM (2003) Genetics of lactase persistence and lactose intolerance. Annu Rev Genet 37(1):197–219PubMedCrossRefGoogle Scholar
  196. Tamang JP, Thapa S (2006) Fermentation dynamics during production of bhaati jaanr, a traditional fermented rice beverage of the Eastern Himalayas. Food Biotechnol 20(3):251–261CrossRefGoogle Scholar
  197. Talahay P, Fahey JW (2001) Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J Nutr 131(11):3027S–3033SGoogle Scholar
  198. Tamang JP (2003) Native microorganisms in fermentation of kinema. Ind J Microbiol 43:127–130Google Scholar
  199. Tamang JP (2010a) Himalayan fermented foods: microbiology, nutrition, and ethnic values. CRC Press, Taylor & Francis Group, New YorkGoogle Scholar
  200. Tamang JP (2010b) Diversity of fermented foods. In: Tamang JP, Kailasapathy K (eds) Fermented foods and beverages of the world. CRC Press, Taylor & Francis Group, New York, pp 41–84CrossRefGoogle Scholar
  201. Tamang JP (ed) (2015) Health benefits of fermented foods and beverages. CRC Press, New YorkGoogle Scholar
  202. Tamang JP, Fleet GH (2009) Yeasts diversity in fermented foods and beverages. In: Satyanarayana T, Kunze G (eds) Yeasts biotechnology: diversity and applications. Springer, New York, pp 169–198. doi: 10.1007/978-1-4020-8292-4_9 CrossRefGoogle Scholar
  203. Tamang B, Tamang JP (2007) Role of lactic acid bacteria and their functional properties in Goyang, a fermented leafy vegetable product of the Sherpas. J Hill Res 20:53–61Google Scholar
  204. Tamang B, Tamang JP (2009) Lactic acid bacteria isolated from indigenous fermented bamboo products of Arunachal Pradesh in India and their functionality. Food Biotechnol 23:133–147. doi: 10.1080/08905430902875945 CrossRefGoogle Scholar
  205. Tamang B, Tamang JP (2010) In situ fermentation dynamics during production of gundruk and khalpi, ethnic fermented vegetables products of the Himalayas. Ind J Microbiol 50(Suppl 1):93–98. doi: 10.1007/s12088-010-0058-1 CrossRefGoogle Scholar
  206. Tamang JP, Dewan S, Thapa S, Olasupo NA, Schillinger U, Wijaya A, Holzapfel WH (2000) Identification and enzymatic profiles of predominant lactic acid bacteria isolated from soft-variety chhurpi, a traditional cheese typical of the Sikkim Himalayas. Food Biotechnol 14:99–112. doi: 10.1080/08905430009549982 CrossRefGoogle Scholar
  207. Tamang JP, Tamang B, Schillinger U, Guigas C, Holzapfel WH (2009b) Functional properties of lactic acid bacteria isolated from ethnic fermented vegetables of the Himalayas. Int J Food Microbiol 135:28–33. doi: 10.1016/j.ijfoodmicro.2009.07.016 PubMedCrossRefGoogle Scholar
  208. Tamang JP, Tamang N, Thapa S, Dewan S, Tamang BM, Yonzan H, Rai AK, Chettri R, Chakrabarty J, Kharel N (2012) Microorganisms and nutritional value of ethnic fermented foods and alcoholic beverages of North East India. Indian J Tradit Knowl 11(1):7–25Google Scholar
  209. Tamang JP, Thapa N, Tamang BM, Rai AK, Chettri R (2015) Microorganisms in Fermented Foods and Beverages. In: Tamang JP (ed) Health benefits of fermented foods and beverages. CRC Press, New York, pp 2–87Google Scholar
  210. Taniguchi M, Nagao K, Inoue K, Imaizumi K (2008) Cholesterol lowering effect of sulfur-containing amino acids added to a soybean protein diet in rats. J Nutr Sci Vitaminol 54(6):448–453. 10.3177/jnsv.54.448 PubMedCrossRefGoogle Scholar
  211. Thapa N, Pal J, Tamang JP (2004) Microbial diversity in ngari, hentak and tungtap, fermented fish products of Northeast India. World J Microbiol Biotechnol 20:599–607. doi: 10.1023/B:WIBI.0000043171.91027.7e CrossRefGoogle Scholar
  212. Thapa N, Pal J, Tamang JP (2007) Microbiological profile of dried fish products of Assam. Ind J Fish 54:121–125Google Scholar
  213. Todorov SD, Holzapfel W (2014) Traditional cereal fermented foods as sources of functional microorganisms. In: Holzapfel W (ed) Advances in fermented foods and beverages: Improving quality, technologies and health benefits. Elsevier, Amsterdam, pp 123–153Google Scholar
  214. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the g-protein-coupled receptor FFAR2. Diabetes 61:364–371. doi: 10.2337/db11-1019 PubMedCrossRefPubMedCentralGoogle Scholar
  215. Topuz E, Derin D, Can G, Kürklü E, Çınar S, Aykan F, Çevikbaş A, Dişçi R, Durna Z, Şakar B, Saglam S (2008) Effect of oral administration of kefir on serum proinflammatory cytokines on 5-FU induced oral mucositis in patients with colorectal cancer. Investig New Drugs 26(6):567–572. doi: 10.1007/s10637-008-9171-y CrossRefGoogle Scholar
  216. Truelsen T, Gronbaek M, Schnohr P, Boysen G (1998) Intake of beer, wine, and spirits and risk of stroke: the Copenhagen city heart study. Stroke 29:2467–2472. doi: 10.1161/01.STR.29.12.2467 PubMedCrossRefGoogle Scholar
  217. Tsubura S (2012) Anti-periodontitis effect of Bacillus subtilis (natto). Shigaku (Odontology) 99:160–164Google Scholar
  218. Tsukamoto Y, Ichise H, Kakuda H, Yamaguchi M (2000) Intake of fermented soybean (natto) increases circulating vitamin K2 (menaquinone-7) and γ-carboxylated osteocalcin concentration in normal individuals. J Bone Miner Metab 18:216–222. doi: 10.1007/s007740070023 PubMedCrossRefGoogle Scholar
  219. Tyopponen S, Petaja E, Mattila-Sandholm T (2003) Bioprotectives and probiotics for dry sausages. Int J Food Microbiol 83:233–244. doi: 10.1016/S0168-1605(02)00379-3 PubMedCrossRefGoogle Scholar
  220. Veinocchi P, Valmossi S, Dalai I, Torrsani S, et Gianotti A, Suzzi G, Guerzoni ME, Mastrocola D, Gardini F (2006) Characterization of the yeast populations involved in the production of a typical Italian bread. J Food Sci 69:M182–M186.doi:  10.1111/j.1365-2621.2004.tb13618.x CrossRefGoogle Scholar
  221. Vijayendra SVN, Halami PM (2015) Health benefits of fermented vegetable products. In: Tamang JP (ed) Health benefits of fermented foods and beverages. CRC Press, New York, pp 325–336Google Scholar
  222. Vijayendra SVN, Palanivel G, Mahadevamma S, Tharanathan RN (2008) Physico-chemical characterization of an exopolysaccharide produced by a non-ropy strain of Leuconostoc sp. CFR 2181 isolated from dahi, an Indian traditional lactic fermented milk product. Carbohydr Polym 72:300–307. doi: 10.1016/j.carbpol.2007.08.016 CrossRefGoogle Scholar
  223. Vogel RF, Hammes WP, Habermeyer M, Engel KH, Knorr D, Eisenbrand G (2011) Microbial food cultures—opinion of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG). Mol Nutr Food Res 55:654–662. doi: 10.1002/mnfr.201100010 PubMedCrossRefGoogle Scholar
  224. Waldherr FW, Vogel RF (2009) Commercial exploitation of homo-exopolysaccharides in non-dairy food systems. In: Ullrich M (ed) Bacterial polysaccharides: current innovations and future trends. Caister Academic Press, Norfolk, pp 313–329Google Scholar
  225. Wang L-J, Li D, Zou L, Chen XD, Cheng Y-Q, Yamaki K, Li L-T (2007a) Antioxidative activity of douchi (a Chinese traditional salt-fermented soybean food) extracts during its processing. Int J Food Prop 10:1–12. doi: 10.1080/10942910601052715 CrossRefGoogle Scholar
  226. Weill FS, Cela EM, Paz ML, Ferrari A, Leoni J, Gonzalez Maglio DH (2013) Lipoteichoic acid from Lactobacillus rhamnosus GG as an oral photoprotective agent against UV-induced carcinogenesis. Br J Nutr 109:457–466. doi: 10.1017/S0007114512001225 PubMedCrossRefGoogle Scholar
  227. Winkler C, Wirleitner B, Schroecksnadel K, Schennach H, Fuchs D (2005) In vitro effects of beetroot juice on stimulated and unstimulated peripheral blood mononuclearcells. Am J Biochem Biotechnol 1:180–185CrossRefGoogle Scholar
  228. Won TJ, Kim B, Song DS, Lim YT, Oh ES, Lee DI, Park ES, Min H, Park S, Hwang KW (2011) Modulation of Th1/Th2 balance by Lactobacillus strains isolated from kimchi via stimulation of macrophage cell line J774A.1 in vitro. J Food Sci 76(2):H55–H61. doi: 10.1111/j.1750-3841.2010.02031.x PubMedCrossRefGoogle Scholar
  229. Wong AHK, Mine Y (2004) A novel fibrinolytic enzyme in fermented shrimp paste, a traditional Asian fermented seasoning. J Agric Food Chem 52:980–986. doi: 10.1021/jf034535y PubMedCrossRefGoogle Scholar
  230. World Health Organization (2013) Global action plan for the prevention and control of noncommunicable diseases 2013–2020Google Scholar
  231. Wu R, Wang L, Wang J, Li H, Menghe B, Wu J, Guo M, Zhang H (2009) Isolation and preliminary probiotic selection of lactobacilli from Koumiss in Inner Mongolia. J Basic Microbiol 49:318–326. doi: 10.1002/jobm.200800047 PubMedCrossRefGoogle Scholar
  232. Yadav H, Jain S, Sinha PR (2007) Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition 23(1):62–68. doi: 10.1016/j.nut.2006.09.002 PubMedCrossRefGoogle Scholar
  233. Yogesh D, Halami PM (2015a) Evidence that multiple proteases of Bacillus subtilis can degrade fibrin and fibrinogen. Int Food Res J 22(4):1662–1667Google Scholar
  234. Yogesh D, Halami PM (2015b) A fibrin degrading serine metallo protease of Bacillus circulans with α-chain specificity. Food Biosci 11:72–78. doi: 10.1016/j.fbio.2015.04.007 CrossRefGoogle Scholar
  235. Yu J, Wang WH, Menghe BL, Jiri MT, Wang HM, Liu WJ, Bao QH et al (2011) Diversity of lactic acid bacteria associated with traditional fermented dairy products in Mongolia. J Dairy Sci 94:3229–3241. doi: 10.3168/jds.2010-3727 PubMedCrossRefGoogle Scholar
  236. Zhang J-H, Tatsumi E, Ding C-H, Li L-T (2006) Angiotensin I- converting enzyme inhibitory peptides in douche, a Chinese traditional fermented soybean product. Food Chem 98:551–557. doi: 10.1016/j.foodchem.2005.06.024 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Microbiology and Fermentation TechnologyCSIR-Central Food Technological Research InstituteMysoreIndia

Personalised recommendations