Advertisement

Experimental and Modeling Study of Cyclohexane Combustion

  • Zhandong Wang
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Cyclohexane (C6H12) has the following properties: molar mass 84.160 g/mol, boiling point 354 K, freezing point 280 K, density 0.799 g/mL, standard enthalpy of formation 123.1 ± 0.79 kJ/mol, standard molar entropy 298.19 J/mol/K, and ionization potential 9.88 ± 0.03 eV.

References

  1. 1.
    Prosen, E. J., Johnson, W. H., & Rossini, F. D. (1946). Heats of formation and combustion of the normal alkylcyclopentanes and cyclohexanes and the increment per CH2 group for several homologous series of hydrocarbons. The Journal of Research of the National Institute of Standards, 37, 51–56.Google Scholar
  2. 2.
    Beckett, C. W., Pitzer, K. S., & Spitzer, R. (1947). The thermodynamic properties and molecular structure of cyclohexane, methylcyclohexane, ethylcyclohexane and the seven dimethylcyclohexanes. Journal of the American Chemical Society, 69(10), 2488–2495.Google Scholar
  3. 3.
    Fernández-Alonso, M. D. C., Cañada, J., Jiménez-Barbero, J., & Cuevas, G. (2005) Theoretical study of inversion and topomerization processes of substituted cyclohexanes: The relevance of the energy 3D hypersurface. ChemPhysChem, 6(4), 671–680.Google Scholar
  4. 4.
    Tsang, W. (1978). Thermal stability of cyclohexane and 1-hexene. International Journal of Chemical Kinetics, 10, 1119–1138.Google Scholar
  5. 5.
    Aribike, D. S., Susu, A. A., & Ogunye, A. F. (1981). Mechanistic and mathematical modeling of the thermal decompostion of cyclohexane. Thermochimica Acta, 51(2–3), 113–127.Google Scholar
  6. 6.
    Brown, T. C., King, K. D., & Nguyent, T. T. (1986). Kinetics of primary processes in the pyrolysis of cyclopentanes and cyclohexanes. Journal of Physical Chemistry, 90, 419–424.Google Scholar
  7. 7.
    Kiefer, J. H., Gupte, K. S., Harding, L. B., & Klippenstein, S. J. (2009). Shock tube and theory investigation of cyclohexane and 1-hexene decomposition. Journal of Physical Chemistry A, 113(48), 13570–13583.Google Scholar
  8. 8.
    Voisin, D., Marchal, A., Reuillon, M., Boettner, J. C., & Cathonnet, M. (1998). Experimental and kinetic modeling study of cyclohexane oxidation in a JSR at high pressure. Combustion Science and Technology, 138(1–6), 137–158.Google Scholar
  9. 9.
    El Bakali, A., Braun-Unkhoff, M., Dagaut, P., Frank, P., & Cathonnet, M. (2000). Detailed kinetic reaction mechanism for cyclohexane oxidation at pressure up to ten atmospheres. Proceedings of the Combustion Institute, 28, 1631–1638.Google Scholar
  10. 10.
    Serinyel, Z., Herbinet, O., Frottier, O., Dirrenberger, P., Warth, V., Glaude, P. A., et al. (2013). An experimental and modeling study of the low- and high-temperature oxidation of cyclohexane. Combustion and Flame, 160, 2319–2332.Google Scholar
  11. 11.
    Sirjean, B., Buda, F., Hakka, H., Glaude, P. A., Fournet, R., Warth, V., et al. (2007). The autoignition of cyclopentane and cyclohexane in a shock tube. Proceedings of the Combustion Institute, 31, 277–284.Google Scholar
  12. 12.
    Daley, S. M., Berkowitz, A. M., & Oehlschlaeger, M. A. (2008). A shock tube study of cyclopentane and cyclohexane ignition at elevated pressures. International Journal of Chemical Kinetics, 40(10), 624–634.Google Scholar
  13. 13.
    Hong, Z., Lam, K.-Y., Davidson, D. F., & Hanson, R. K. (2011). A comparative study of the oxidation characteristics of cyclohexane, methylcyclohexane, and n-butylcyclohexane at high temperatures. Combustion and Flame, 158(8), 1456–1468.Google Scholar
  14. 14.
    Lemaire, O., Ribaucour, M., Carlier, M., & Minetti, R. (2001). The production of benzene in the low-temperature oxidation of cyclohexane, cyclohexene, and cyclohexa-1,3-diene. Combustion and Flame, 127(1–2), 1971–1980.Google Scholar
  15. 15.
    Vranckx, S., Lee, C., Chakravarty, H. K., & Fernandes, R. X. (2013). A rapid compression machine study of the low temperature combustion of cyclohexane at elevated pressures. Proceedings of the Combustion Institute, 34(1), 377–384.Google Scholar
  16. 16.
    Yang, Y., & Boehman, A. L. (2009). Experimental study of cyclohexane and methylcyclohexane oxidation at low to intermediate temperature in a motored engine. Proceedings of the Combustion Institute, 32, 419–426.Google Scholar
  17. 17.
    Silke, E. J., Pitz, W. J., Westbrook, C. K., & Ribaucour, M. (2007). Detailed chemical kinetic modeling of cyclohexane oxidation. Journal of Physical Chemistry A, 111(19), 3761–3775.Google Scholar
  18. 18.
    Bennett, P. J., Gregory, D., & Jackson, R. A. (1996). Mechanistic studies on the combustion of isotopically labelled cyclohexanes within a single cylinder internal combustion engine. Combustion Science and Technology, 115(1–3), 83–103.Google Scholar
  19. 19.
    Billaud, F., Chaverot, P., Berthelin, M., & Freund, E. (1988). Thermal decomposition of cyclohexane at approximately 810 °C. Industrial and Engineering Chemistry Research, 27, 759–764.Google Scholar
  20. 20.
    Ciajolo, A., Tregrossi, A., Mallardo, M., Faravelli, T., & Ranzi, E. (2009). Experimental and kinetic modeling study of sooting atmospheric-pressure cyclohexane flame. Proceedings of the Combustion Institute, 32, 585–591.Google Scholar
  21. 21.
    Law, M. E., Westmoreland, P. R., Cool, T. A., Wang, J., Hansen, N., Taatjes, C. A., et al. (2007). Benzene precursors and formation routes in a stoichiometric cyclohexane flame. Proceedings of the Combustion Institute, 31, 565–573.Google Scholar
  22. 22.
    Li, W., Law, M. E., Westmoreland, P. R., Kasper, T., Hansen, N., & Kohse-Höinghaus, K. (2011). Multiple benzene-formation paths in a fuel-rich cyclohexane flame. Combustion and Flame, 158(11), 2077–2089.Google Scholar
  23. 23.
    McEnally, C. S., & Pfefferle, L. D. (2004). Experimental study of fuel decomposition and hydrocarbon growth processes for cyclohexane and related compounds in nonpremixed flames. Combustion and Flame, 136(1–2), 155–167.Google Scholar
  24. 24.
    Davis, S. G., & Law, C. K. (1998). Determination of and fuel structure effects on laminar flame speeds of C1–C8 hydrocarbons. Combustion Science and Technology, 140, 427–449.Google Scholar
  25. 25.
    Ji, C., Dames, E., Sirjean, B., Wang, H., & Egolfopoulos, F. N. (2011). An experimental and modeling study of the propagation of cyclohexane and mono-alkylated cyclohexane flames. Proceedings of the Combustion Institute, 33, 971–978.Google Scholar
  26. 26.
    Wu, F., Kelley, A. P., & Law, C. K. (2012). Laminar flame speeds of cyclohexane and mono-alkylated cyclohexanes at elevated pressures. Combustion and Flame, 159(4), 1417–1425.Google Scholar
  27. 27.
    Granata, S., Faravelli, T., & Ranzi, E. (2003). A wide range kinetic modeling study of the pyrolysis and combustion of naphthenes. Combustion and Flame, 132(3), 533–544.Google Scholar
  28. 28.
    Wang, H., Dames, E., Sirjean, B., Sheen, D. A., Tangko, R., Violi, A., et al. (2010) A high-temperature chemical kinetic model of n-alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane oxidation at high temperatures, JetSurF version 2.0, September 19, 2010. (http://melchior.usc.edu/JetSurF/JetSurF2.0).
  29. 29.
    Buda, F., Heyberger, B., Fournet, R., Glaude, P. A., Warth, V., & Battin-Leclerc, F. (2006). Modeling of the gas-phase oxidation of cyclohexane. Energy & Fuels, 20(4), 1450–1459.Google Scholar
  30. 30.
    Sirjean, B., Glaude, P. A., Ruiz-Lòpez, M. F., & Fournet, R. (2009). Theoretical kinetic study of the reactions of cycloalkylperoxy radicals. Journal of Physical Chemistry A, 113(25), 6924–6935.Google Scholar
  31. 31.
    Tsang, W. (1988). Chemical kinetic data base for combustion chemistry. Part 3: Propane. Journal of Physical and Chemical Reference Data, 17(2), 887–951.Google Scholar
  32. 32.
    Sirjean, B., Glaude, P. A., Ruiz-Lopez, M. F., & Fournet, R. (2006). Detailed kinetic study of the ring opening of cycloalkanes by CBS-QB3 calculations. Journal of Physical Chemistry A, 110(46), 12693–12704.Google Scholar
  33. 33.
    Sivaramakrishnan, R., & Michael, J. V. (2009). Shock tube measurements of high temperature rate constants for OH with cycloalkanes and methylcycloalkanes. Combustion and Flame, 156(5), 1126–1134.Google Scholar
  34. 34.
    Cohen, N., & Westberg, K. R. (1986). The use of transition-state theory to extrapolate rate coefficients for reactions of O atoms with alkanes. International Journal of Chemical Kinetics, 18(1), 99–140.Google Scholar
  35. 35.
    Handford-Styring, S. M., & Walker, R. W. (2001). Arrhenius parameters for the reaction HO2 + cyclohexane between 673 and 773 K, and for H atom transfer in cyclohexylperoxy radicals. Physical Chemistry Chemical Physics, 3(11), 2043–2052.Google Scholar
  36. 36.
    Knepp, A. M., Meloni, G., Jusinski, L. E., Taatjes, C. A., Cavallotti, C., & Klippenstein, S. J. (2007). Theory, measurements, and modeling of OH and HO2 formation in the reaction of cyclohexyl radicals with O2. Physical Chemistry Chemical Physics, 9(31), 4315–4331.Google Scholar
  37. 37.
    Sirjean, B., Glaude, P. A., Ruiz-Lopèz, M. F., & Fournet, R. (2008). Theoretical kinetic study of thermal unimolecular decomposition of cyclic alkyl radicals. Journal of Physical Chemistry A, 112(46), 11598–11610.Google Scholar
  38. 38.
    Iwan, I., McGivern, W. S., Manion, J. A., & Tsang, W. (2007). The decomposition and isomerization of cyclohexyl and 1-hexenyl radicals. In Proceedings of 5th US Combustion Meeting, San Diego, CA 2007, CO2.Google Scholar
  39. 39.
    Wang, Z., Ye, L., Yuan, W., Zhang, L., Wang, Y., Cheng, Z., et al. (2014). Experimental and kinetic modeling study on methylcyclohexane pyrolysis and combustion. Combustion and Flame, 161, 84–100.Google Scholar
  40. 40.
    Tsang, W., Walker, J. A., & Manion, J. A. (1998). Single-pulse shock-tube study on the decomposition of 1-pentyl radicals. Symposium (International) on Combustion, 27(1), 135–142.Google Scholar
  41. 41.
    Tsang, W. (2005). Mechanism and rate constants for the decomposition of 1-pentenyl radicals. Journal of Physical Chemistry A, 110(27), 8501–8509.Google Scholar
  42. 42.
    Tsang, W., Walker, J. A., & Manion, J. A. (2007). The decomposition of normal hexyl radicals. Proceedings of the Combustion Institute, 31(1), 141–148.Google Scholar
  43. 43.
    Tsang, W., McGivern, W. S., & Manion, J. A. (2009). Multichannel decomposition and isomerization of octyl radicals. Proceedings of the Combustion Institute, 32(1), 131–138.Google Scholar
  44. 44.
    Gong, C., Li, Z., & Li, X. (2012). Theoretical kinetic study of thermal decomposition of cyclohexane. Energy & Fuels, 26(5), 2811–2820.Google Scholar
  45. 45.
    Kiefer, J. H., & Shah, J. N. (1987). Unimolecular dissociation of cyclohexene at extremely high temperatures: Behavior of the energy-transfer collision efficiency. Journal of Physical Chemistry, 91(11), 3024–3030.Google Scholar
  46. 46.
    Pitz, W. J., Naik, C. V., Mhaoldúin, T. N., Westbrook, C. K., Curran, H. J., Orme, J. P., et al. (2007). Modeling and experimental investigation of methylcyclohexane ignition in a rapid compression machine. Proceedings of the Combustion Institute, 31, 267–275.Google Scholar
  47. 47.
    Orme, J. P., Curran, H. J., & Simmie, J. M. (2006). Experimental and modeling study of methyl cyclohexane pyrolysis and oxidation. Journal of Physical Chemistry A, 110(1), 114–131.Google Scholar
  48. 48.
    Dayma, G., Glaude, P. A., Fournet, R., & Battin-Leclerc, F. (2003). Experimental and modeling study of the oxidation of cyclohexene. International Journal of Chemical Kinetics, 35(7), 273–285.Google Scholar
  49. 49.
    Sirjean, B., Glaude, P. A., Ruiz-Lopez, M. F., Fournet, R. Theoretical kinetic study of the ring opening and dehydrogenation of cyclic alkenes. Manuscript in preparation.Google Scholar
  50. 50.
    Zhang, L., Cai, J., Zhang, T., & Qi, F. (2010). Kinetic modeling study of toluene pyrolysis at low pressure. Combustion and Flame, 157(9), 1686–1697.Google Scholar
  51. 51.
    Li, Y., Cai, J., Zhang, L., Yang, J., Wang, Z., & Qi, F. (2011). Experimental and modeling investigation on premixed ethylbenzene flames at low pressure. Proceedings of the Combustion Institute, 33(1), 617–624.Google Scholar
  52. 52.
    Li, Y., Cai, J., Zhang, L., Yuan, T., Zhang, K., & Qi, F. (2011). Investigation on chemical structures of premixed toluene flames at low pressure. Proceedings of the Combustion Institute, 33(1), 593–600.Google Scholar
  53. 53.
    Wang, Z., Li, Y., Zhang, F., Zhang, L., Yuan, W., Wang, Y., et al. (2013). An experimental and kinetic modeling investigation on a rich premixed n-propylbenzene flame at low pressure. Proceedings of the Combustion Institute, 34(1), 1785–1793.Google Scholar
  54. 54.
    Hansen, N., Miller, J. A., Westmoreland, P. R., Kasper, T., Kohse-Höinghaus, K., Wang, J., et al. (2009). Isomer-specific combustion chemistry in allene and propyne flames. Combustion and Flame, 156(11), 2153–2164.Google Scholar
  55. 55.
    Miller, J. A., & Klippenstein, S. J. (2003). The recombination of propargyl radicals and other reactions on a C6H6 potential. Journal of Physical Chemistry A, 107(39), 7783–7799.Google Scholar
  56. 56.
    Georgievskii, Y., Miller, J. A., & Klippenstein, S. J. (2007). Association rate constants for reactions between resonance-stabilized radicals: C3H3 + C3H3, C3H3 + C3H5, and C3H5 + C3H5. Physical Chemistry Chemical Physics, 9(31), 4259–4268.Google Scholar
  57. 57.
    Scherer, S., Just, T., & Frank, P. (2000). High-temeprature investigations on pyrolytic reactions of propargyl radicals. Proceedings of the Combustion Institute, 28(2), 1511–1518.Google Scholar
  58. 58.
    Fernandes, R. X., Hippler, H., & Olzmann, M. (2005). Determination of the rate coefficient for the C3H3 + C3H3 reaction at high temperatures by shock-tube investigations. Proceedings of the Combustion Institute, 30(1), 1033–1038.Google Scholar
  59. 59.
    D’Anna, A., & Kent, J. H. (2003). Aromatic formation pathways in non-premixed methane flames. Combustion and Flame, 132(4), 715–722.Google Scholar
  60. 60.
    Wu, C. H., & Kern, R. D. (1987). Shock-tube study of allene pyrolysis. Journal of Physical Chemistry, 91(24), 6291–6296.Google Scholar
  61. 61.
    Senosiain, J. P., & Miller, J. A. (2007). The reaction of n- and i-C4H5 radicals with acetylene. Journal of Physical Chemistry A, 111(19), 3740–3747.Google Scholar
  62. 62.
    Lindstedt, R. P., & Skevis, G. (1997). Chemistry of acetylene flames. Combustion Science and Technology, 125(1–6), 73–137.Google Scholar
  63. 63.
    Marinov, N. M., Castaldi, M. J., Melius, C. F., & Tsang, W. (1997). Aromatic and polycyclic aromatic hydrocarbon formation in a premixed propane flame. Combustion Science and Technology, 128(1–6), 295–342.Google Scholar
  64. 64.
    Miller, J. A., Georgievskii, Y., Allen, W. D., & Klippenstein, S. J. Unpublished data.Google Scholar
  65. 65.
    Hansen, N., Miller, J. A., Kasper, T., Kohse-Höinghaus, K., Westmoreland, P. R., Wang, J., et al. (2009). Benzene formation in premixed fuel-rich 1,3-butadiene flames. Proceedings of the Combustion Institute, 32(1), 623–630.Google Scholar
  66. 66.
    Violi, A., Truong, T. N., & Sarofim, A. F. (2004). Kinetics of hydrogen abstraction reactions from polycyclic aromatic hydrocarbons by H atoms. Journal of Physical Chemistry A, 108(22), 4846–4852.Google Scholar
  67. 67.
    Seta, T., Nakajima, M., & Miyoshi, A. (2006). High-temperature reactions of OH radicals with benzene and toluene. Journal of Physical Chemistry A, 110(15), 5081–5090.Google Scholar
  68. 68.
    Roy, K., Horn, C., Frank, P., Slutsky, V. G., & Just, T. (1998). High-temperature investigations on the pyrolysis of cyclopentadiene. Symposium (International) on Combustion, 27(1), 329–336.Google Scholar
  69. 69.
    Bacskay, G. B., & Mackie, J. C. (2001). The pyrolysis of cyclopentadiene: quantum chemical and kinetic modelling studies of the acetylene plus propyne/allene decomposition channels. Physical Chemistry Chemical Physics, 3(12), 2467–2473.Google Scholar
  70. 70.
    Wang, H., You, X., Joshi, A. V., Davis, S. G., Laskin, A., & Egolfopoulos, F., et al. (2007). High-temperature combustion reaction model of H2/CO/C1–C4 compounds. http://ignis.usc.edu/USC_Mech_II.htm.
  71. 71.
    Richter, H., Granata, S., Green, W. H., & Howard, J. B. (2005). Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame. Proceedings of the Combustion Institute, 30(1), 1397–1405.Google Scholar
  72. 72.
    Moskaleva, L. V., & Lin, M. C. (2000). Unimolecular isomerization/decomposition of cyclopentadienyl and related bimolecular reverse process: ab initio MO/statistical theory study. Journal of Computational Chemistry, 21(6), 415–425.Google Scholar
  73. 73.
    Zhong, X., & Bozzelli, J. W. (1998). Thermochemical and kinetic analysis of the H, OH, HO2, O, and O2 association reactions with cyclopentadienyl radical. Journal of Physical Chemistry A, 102(20), 3537–3555.Google Scholar
  74. 74.
    Zhang, Y., Cai, J., Zhao, Lo, Yang, J., Jin, H., Cheng, Z., et al. (2012). An experimental and kinetic modeling study of three butene isomers pyrolysis at low pressure. Combustion and Flame, 159, 905–917.Google Scholar
  75. 75.
    Laskin, A., Wang, H., & Law, C. K. (2000). Detailed kinetic modeling of 1,3-butadiene oxidation at high temperatures. International Journal of Chemical Kinetics, 32(10), 589–614.Google Scholar
  76. 76.
    Miller, J. A., Senosiain, J. P., Klippenstein, S. J., & Georgievskii, Y. (2008). Reactions over multiple, interconnected potential wells: unimolecular and bimolecular reactions on a C3H5 potential. Journal of Physical Chemistry A, 112(39), 9429–9438.Google Scholar
  77. 77.
    Davis, S. G., Law, C. K., & Wang, H. (1999). Propyne pyrolysis in a flow reactor: An experimental, RRKM, and detailed kinetic modeling study. Journal of Physical Chemistry A, 103(30), 5889–5899.Google Scholar
  78. 78.
    Wang, H., & Frenklach, M. (1997). A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. Combustion and Flame, 110, 173–221.Google Scholar
  79. 79.
    Miller, J. A. Private communicatioin.Google Scholar
  80. 80.
    Tokmakov, I. V., Park, J., Gheyas, S., & Lin, M. C. (1999). Experimental and theoretical studies of the reaction of the phenyl radical with methane. Journal of Physical Chemistry A, 103(19), 3636–3645.Google Scholar
  81. 81.
    Asaba, T., & Fujii, N. (1971). High temperature oxidation of benzene. Proceedings of the International Symposium Shock Tubes Waves, 8, 1–12.Google Scholar
  82. 82.
    Alzueta, M. U., Glarborg, P., & Dam-Johansen, K. (2000). Experimental and kinetic modeling study of the oxidation of benzene. International Journal of Chemical Kinetics, 32(8), 498–522.Google Scholar
  83. 83.
    Baulch, D. L., Cobos, C. J., Cox, R. A., Esser, C., Frank, P., Just, T., et al. (1992). Evaluated kinetic data for combustion modelling. Journal of Physical and Chemical Reference Data, 21(3), 411–734.Google Scholar
  84. 84.
    Wang, Z., Cheng, Z., Yuan, W., Cai, J., Zhang, L., Zhang, F., et al. (2012). An experimental and kinetic modeling study of cyclohexane pyrolysis at low pressure. Combustion and Flame, 159(7), 2243–2253.Google Scholar
  85. 85.
    Taatjes, C. A., Osborn, D. L., Selby, T. M., Meloni, G., Fan, H. Y., & Pratt, S. T. (2008). Absolute photoionization cross-section of the methyl radical. Journal of Physical Chemistry A, 112(39), 9336–9343.Google Scholar
  86. 86.
    Cool, T. A., Wang, J., Nakajima, K., Taatjes, C. A., & McIlroy, A. (2005). Photoionization cross sections for reaction intermediates in hydrocarbon combustion. International Journal of Mass Spectrometry, 247(1–3), 18–27.Google Scholar
  87. 87.
    Robinson, J. C., Sveum, N. E., & Neumark, D. M. (2003). Determination of absolute photoionization cross sections for vinyl and propargyl radicals. The Journal of Chemical Physics, 119(11), 5311–5314.Google Scholar
  88. 88.
    Yang, B., Wang, J., Cool, T. A., Hansen, N., Skeen, S., & Osborn, D. L. (2012). Absolute photoionization cross-sections of some combustion intermediates. International Journal of Mass Spectrometry, 309, 118–128.Google Scholar
  89. 89.
    Robinson, J. C., Sveum, N. E., & Neumark, D. M. (2004). Determination of absolute photoionization cross sections for isomers of C3H5: Allyl and 2-propenyl radicals. Chemical Physics Letters, 383(5–6), 601–605.Google Scholar
  90. 90.
    Cool, T. A., Nakajima, K., Mostefaoui, T. A., Qi, F., McIlroy, A., Westmoreland, P. R., et al. (2003). Selective detection of isomers with photoionization mass spectrometry for studies of hydrocarbon flame chemistry. The Journal of Chemical Physics, 119(16), 8356–8365.Google Scholar
  91. 91.
    Koizumi, H. (1991). Predominant decay channel for superexcited organic molecules. The Journal of Chemical Physics, 95(8), 5846–5852.Google Scholar
  92. 92.
    Wang, J., Yang, B., Cool, T. A., Hansen, N., & Kasper, T. (2008). Near-threshold absolute photoionization cross-sections of some reaction intermediates in combustion. International Journal of Mass Spectrometry, 269(3), 210–220.Google Scholar
  93. 93.
    Hansen, N., Klippenstein, S. J., Miller, J. A., Wang, J., Cool, T. A., Law, M. E., et al. (2006). Identification of C5Hx isomers in fuel-rich flames by photoionization mass spectrometry and electronic structure calculations. Journal of Physical Chemistry A, 110(13), 4376–4388.Google Scholar
  94. 94.
    Zhou, Z., Zhang, L., Xie, M., Wang, Z., Chen, D., & Qi, F. (2010). Determination of absolute photoionization cross-sections of alkanes and cyclo-alkanes. Rapid Communications in Mass Spectrometry, 24(9), 1335–1342.Google Scholar
  95. 95.
    CHEMKIN-PRO 15092. (2009). Reaction design. San Diego.Google Scholar
  96. 96.
    Hansen, N., Kasper, T., Yang, B., Cool, T. A., Li, W. J., Westmoreland, P. R., et al. (2011). Fuel-structure dependence of benzene formation processes in premixed flames fueled by C6H12 isomers. Proceedings of the Combustion Institute, 33(1), 585–592.Google Scholar
  97. 97.
    Hansen, N., Li, W., Law, M. E., Kasper, T., Westmoreland, P. R., Yang, B., et al. (2010). The importance of fuel dissociation and propargyl plus allyl association for the formation of benzene in a fuel-rich 1-hexene flame. Physical Chemistry Chemical Physics, 12(38), 12112–12122.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.University of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations