Advertisement

Introduction

  • Zhandong Wang
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Energy—its safety and availability—determines the future of human society. Although there continues to be significant development in renewable energies, more than 85% of current energy still originates with combustion of fossil fuels, guaranteeing a prosperous global economy and quality of life.

References

  1. 1.
    Ding, Y. Yu, H., Wan, Z., & Wang, P. (2011). China statistical yearbook-2011. China Statistics Press.Google Scholar
  2. 2.
    Yao, M., Zheng, Z., & Liu, H. (2009). Progress and recent trends in homogeneous charge compression ignition (HCCI) engines. Progress in Energy and Combustion Science, 35(5), 398–437.Google Scholar
  3. 3.
    International energy outlook (2010). U.S. Energy information administration: Washington, DC 20585.Google Scholar
  4. 4.
    Development strategy on engineering thermal physics and energy utilization (2011–2020). Science Press.Google Scholar
  5. 5.
    Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., et al. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core. Antarctica Nature, 399(6735), 429–436.Google Scholar
  6. 6.
    Basic research needs for clean and efficient combusiton of 21th century transportation fuels. http://www.sc.doe.gov/bes/reports/files/CTF_rpt.pdf.
  7. 7.
    Stanglmaier, R. H. & Roberts, C. E. (1999). Homogeneous charge compression ignition (HCCI): Benefits, compromises, and future engine applications. Society of Automotive Engineers, SAE-1999-01-3682.Google Scholar
  8. 8.
    Elkelawy, M., Zhang, Y., Hagar, A. E., & Yu, Y. (2008). Challenging and future of homogeous charge compression ignition engines: An advanced and novel concepts review. Journal of Power and Energy Systems, 2, 1108–1119.Google Scholar
  9. 9.
    Kohse-Höinghaus, K., & Jeffries, J. B. (2002). Applied combustion diagnostics, In K. C. Smyth & D. R. Crosley (Eds.), New York: Taylor & Francis.Google Scholar
  10. 10.
    Melton, L. A. (1984). Soot diagnostics based on laser heating. Applied Optics, 23(13), 2201–2208.Google Scholar
  11. 11.
    McIlroy, A. (1998). Direct measurement of 1CH2 in flames by cavity ringdown laser absorption spectroscopy. Chemical Physics Letters, 296(1–2), 151–158.Google Scholar
  12. 12.
    Akhter, M. S., Chughtai, A. R., & Smith, D. M. (1985). The structure of hexane soot I: Spectroscopic studies. Applied Spectroscopy, 39(1), 143–153.Google Scholar
  13. 13.
    Oltmann, H., Reimann, J., & Will, S. (2010). Wide-angle light scattering (WALS) for soot aggregate characterization. Combustion and Flame, 157(3), 516–522.Google Scholar
  14. 14.
    Vasu, S. S., Davidson, D. F., Hong, Z., & Hanson, R. K. (2009). Shock tube study of methylcyclohexane ignition over a wide range of pressure and temperature. Energy & Fuels, 23(1), 175–185.Google Scholar
  15. 15.
    Davidson, D. F., Hong, Z., Pilla, G. L., Farooq, A., Cook, R. D., & Hanson, R. K. (2010). Multi-species time-history measurements during n-heptane oxidation behind reflected shock waves. Combustion and Flame, 157(10), 1899–1905.Google Scholar
  16. 16.
    Lam, K.-Y., Ren, W., Hong, Z., Davidson, D. F., & Hanson, R. K. (2012). Shock tube measurements of 3-pentanone pyrolysis and oxidation. Combustion and Flame, 159(11), 3251–3263.Google Scholar
  17. 17.
    Biordi, J. C., Lazzara, C. P., & Papp, J. F. (1974). Molecular-beam mass-spectrometry applied to determining kinetics of reactions in flames. 1. empirical characterization of flame perturbation by molecular-beam sampling probes. Combustion and Flame, 23(1), 73–82.Google Scholar
  18. 18.
    Biordi, J. C. (1977). Molecular beam mass spectrometry for studying the fundamental chemistry of flames. Progress in Energy and Combustion Science, 3(3), 151–173.Google Scholar
  19. 19.
    Hansen, N., Cool, T. A., Westmoreland, P. R., & Kohse-Höinghaus, K. (2009). Recent contributions of flame-sampling molecular-beam mass spectrometry to a fundamental understanding of combustion chemistry. Progress in Energy and Combustion Science, 35(2), 168–191.Google Scholar
  20. 20.
    Qi, F. (2013). Combustion chemistry probed by synchrotron VUV photoionization mass spectrometry. Proceedings of the Combustion Institute, 34, 33–63.Google Scholar
  21. 21.
    Cord, M., Husson, B., Lizardo Huerta, J. C., Herbinet, O., Glaude, P.-A., Fournet, R., et al. (2012). Study of the low temperature oxidation of propane. The Journal of Physical Chemistry A, 116(50), 12214–12228.Google Scholar
  22. 22.
    Serinyel, Z., Herbinet, O., Frottier, O., Dirrenberger, P., Warth, V., Glaude, P. A., et al. (2013). An experimental and modeling study of the low- and high-temperature oxidation of cyclohexane. Combustion and Flame, 160, 2319–2332.Google Scholar
  23. 23.
    NIST/EPA/NIH Mass spectral library (NIST 08). NIST.Google Scholar
  24. 24.
    Dagaut, P. (2002). On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel. Physical Chemistry Chemical Physics, 4(11), 2079–2094.Google Scholar
  25. 25.
    Dagaut, P., & Cathonnet, M. (2006). The ignition, oxidation, and combustion of kerosene: A review of experimental and kinetic modeling. Progress in Energy and Combustion Science, 32(1), 48–92.Google Scholar
  26. 26.
    Battin-Leclerc, F. (2008). Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates. Progress in Energy and Combustion Science, 34(4), 440–498.Google Scholar
  27. 27.
    Matras, D., & Villermaux, J. (1973). Un réacteur continu parfaitement agité par jets gazeux pour l’étude cinétique de réactions chimiques rapides. Chemical Engineering Science, 28(1), 129–137.Google Scholar
  28. 28.
    Battin-Leclerc, F., Blurock, E., Bounaceur, R., Fournet, R., Glaude, P. A., Herbinet, O., et al. (2011). Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models. Chemical Society Reviews, 40(9), 4762–4782.Google Scholar
  29. 29.
    Battin-Leclerc, F., Herbinet, O., Glaude, P. A., Fournet, R., Zhou, Z., Deng, L., et al. (2010). Experimental confirmation of the low-temperature oxidation scheme of alkanes. Angewandte Chemie International Edition, 49(18), 3169–3172.Google Scholar
  30. 30.
    Porter, R., Glaude, P.-A., Buda, F., & Battin-Leclerc, F. (2008). A tentative modeling study of the effect of wall reactions on oxidation phenomena. Energy & Fuels, 22(6), 3736–3743.Google Scholar
  31. 31.
    Herbinet, O., Battin-Leclerc, F., Bax, S., Le Gall, H., Glaude, P. A., Fournet, R., et al. (2011). Detailed product analysis during the low temperature oxidation of n-butane. Physical Chemistry Chemical Physics, 13(1), 296–308.Google Scholar
  32. 32.
    Herbinet, O., & Dayma, G. (2013). Jet-Stirred reactors. In F. Battin-Leclerc, J. M. Simmie & E. Blurock (Eds.), Cleaner combustion: Developing detailed chemical kinetic models (pp. 183–210). Springer London: London.Google Scholar
  33. 33.
    Zeppieri, S., Brezinsky, K., & Glassman, I. (1997). Pyrolysis studies of methylcyclohexane and oxidation studies of methylcyclohexane and methylcyclohexane/toluene blends. Combustion and Flame, 108(3), 266–286.Google Scholar
  34. 34.
    Curran, H. J., Pitz, W. J., Westbrook, C. K., Callahan, G. V., & Dryer, F. L. (1998). Oxidation of automotive primary reference fuels at elevated pressures. Symposium (International) on Combustion, 27(1), 379–387.Google Scholar
  35. 35.
    Mueller, M. A., Kim, T. J., Yetter, R. A., & Dryer, F. L. (1999). Flow reactor studies and kinetic modeling of the H2/O2 reaction. International Journal of Chemical Kinetics, 31(2), 113–125.Google Scholar
  36. 36.
    Curran, H. J., Fischer, S. L., & Dryer, F. L. (2000). The reaction kinetics of dimethyl ether. II: Low-temperature oxidation in flow reactors. International Journal of Chemical Kinetics, 32(12), 741–759.Google Scholar
  37. 37.
    Li, J., Zhao, Z., Kazakov, A., & Dryer, F. L. (2004). An updated comprehensive kinetic model of hydrogen combustion. International Journal of Chemical Kinetics, 36(10), 566–575.Google Scholar
  38. 38.
    Li, J., Zhao, Z., Kazakov, A., Chaos, M., Dryer, F. L., & Scire, J. J. (2007). A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion. International Journal of Chemical Kinetics, 39(3), 109–136.Google Scholar
  39. 39.
    Zhao, Z., Chaos, M., Kazakov, A., & Dryer, F. L. (2008). Thermal decomposition reaction and a comprehensive kinetic model of dimethyl ether. International Journal of Chemical Kinetics, 40, 1–18.Google Scholar
  40. 40.
    Tsang, W. (1978). Thermal stability of cyclohexane and 1-hexene. International Journal of Chemical Kinetics, 10, 1119–1138.Google Scholar
  41. 41.
    Tsang, W., Walker, J. A., & Manion, J. A. (1998). Single-pulse shock-tube study on the decomposition of 1-pentyl radicals. Symposium (International) on Combustion, 27(1), 135–142.Google Scholar
  42. 42.
    Tsang, W. (2005). Mechanism and rate constants for the decomposition of 1-pentenyl radicals. The Journal of Physical Chemistry A, 110(27), 8501–8509.Google Scholar
  43. 43.
    Tsang, W., Walker, J. A., & Manion, J. A. (2007). The decomposition of normal hexyl radicals. Proceedings of the Combustion Institute, 31(1), 141–148.Google Scholar
  44. 44.
    McGivern, W. S., Awan, I. A., Tsang, W., & Manion, J. A. (2008). Isomerization and decomposition reactions in the pyrolysis of branched hydrocarbons: 4-methyl-1-pentyl radical. The Journal of Physical Chemistry A, 112(30), 6908–6917.Google Scholar
  45. 45.
    Tsang, W., McGivern, W. S., & Manion, J. A. (2009). Multichannel decomposition and isomerization of octyl radicals. Proceedings of the Combustion Institute, 32(1), 131–138.Google Scholar
  46. 46.
    Manion, J. A., & Awan, I. A. (2013). The decomposition of 2-pentyl and 3-pentyl radicals. Proceedings of the Combustion Institute, 34(1), 537–545.Google Scholar
  47. 47.
    Gudiyella, S., & Brezinsky, K. (2012). High pressure study of n-propylbenzene oxidation. Combustion and Flame, 159, 940–958.Google Scholar
  48. 48.
    Gudiyella, S., & Brezinsky, K. (2013). The high pressure study of n-propylbenzene pyrolysis. Proceedings of the Combustion Institute, 34(1), 1767–1774.Google Scholar
  49. 49.
    Malewicki, T., & Brezinsky, K. (2013). Experimental and modeling study on the pyrolysis and oxidation of n-decane and n-dodecane. Proceedings of the Combustion Institute, 34(1), 361–368.Google Scholar
  50. 50.
    Malewicki, T., Comandini, A., & Brezinsky, K. (2013). Experimental and modeling study on the pyrolysis and oxidation of iso-octane. Proceedings of the Combustion Institute, 34(1), 353–360.Google Scholar
  51. 51.
    Malewicki, T., Gudiyella, S., & Brezinsky, K. (2013). Experimental and modeling study on the oxidation of Jet A and the n-dodecane/iso-octane/n-propylbenzene/1,3,5-trimethylbenzene surrogate fuel. Combustion and Flame, 160(1), 17–30.Google Scholar
  52. 52.
    Pousse, E., Glaude, P. A., Fournet, R., & Battin-Leclerc, F. (2009). A lean methane premixed laminar flame doped with components of diesel fuel: I. n-Butylbenzene. Combustion and Flame, 156(5), 954–974.Google Scholar
  53. 53.
    Pousse, E., Porter, R., Warth, V., Glaude, P. A., Fournet, R., & Battin-Leclerc, F. (2010). Lean methane premixed laminar flames doped by components of diesel fuel II: n-Propylcyclohexane. Combustion and Flame, 157(1), 75–90.Google Scholar
  54. 54.
    Pousse, E., Tian, Z. Y., Glaude, P. A., Fournet, R., & Battin-Leclerc, F. (2010). A lean methane premixed laminar flame doped with components of diesel fuel part III: Indane and comparison between n-butylbenzene, n-propylcyclohexane and indane. Combustion and Flame, 157(7), 1236–1260.Google Scholar
  55. 55.
    Sarathy, S. M., Yeung, C., Westbrook, C. K., Pitz, W. J., Mehl, M., & Thomson, M. J. (2011). An experimental and kinetic modeling study of n-octane and 2-methylheptane in an opposed-flow diffusion flame. Combustion and Flame, 158(7), 1277–1287.Google Scholar
  56. 56.
    Dayma, G., Sarathy, S. M., Togbé, C., Yeung, C., Thomson, M. J., & Dagaut, P. (2011). Experimental and kinetic modeling of methyl octanoate oxidation in an opposed-flow diffusion flame and a jet-stirred reactor. Proceedings of the Combustion Institute, 33(1), 1037–1043.Google Scholar
  57. 57.
    Yeung, C., & Thomson, M. J. (2013). Experimental and kinetic modeling study of 1-hexanol combustion in an opposed-flow diffusion flame. Proceedings of the Combustion Institute, 34(1), 795–802.Google Scholar
  58. 58.
    Mani Sarathy, S., Niemann, U., Yeung, C., Gehmlich, R., Westbrook, C. K., Plomer, M., et al. (2013). A counterflow diffusion flame study of branched octane isomers. Proceedings of the Combustion Institute, 34(1), 1015–1023.Google Scholar
  59. 59.
    Cool, T. A., Nakajima, K., Mostefaoui, T. A., Qi, F., McIlroy, A., Westmoreland, P. R., et al. (2003). Selective detection of isomers with photoionization mass spectrometry for studies of hydrocarbon flame chemistry. Journal of Chemical Physics, 119(16), 8356–8365.Google Scholar
  60. 60.
    Cool, T. A., McIlroy, A., Qi, F., Westmoreland, P. R., Poisson, L., Peterka, D. S., et al. (2005). Photoionization mass spectrometer for studies of flame chemistry with a synchrotron light source. Review of Scientific Instruments, 76(9), 094102.Google Scholar
  61. 61.
    Zhang, T., Wang, J., Yuan, T., Hong, X., Zhang, L., & Qi, F. (2008). Pyrolysis of Methyl tert-Butyl Ether (MTBE). 1. experimental study with molecular-beam mass spectrometry and tunable synchrotron VUV photoionization. Journal of Physical Chemistry A, 112(42), 10487–10494.Google Scholar
  62. 62.
    Zhang, T., Zhang, L., Hong, X., Zhang, K., Qi, F., Law, C. K., et al. (2009). An experimental and theoretical study of toluene pyrolysis with tunable synchrotron VUV photoionization and molecular-beam mass spectrometry. Combustion and Flame, 156(11), 2071–2083.Google Scholar
  63. 63.
    Zhang, Y., Cai, J., Zhao, L. O., Yang, J., Jin, H., Cheng, Z., Li, Y., Zhang, L., & Qi, F. (2012). An experimental and kinetic modeling study of three butene isomers pyrolysis at low pressure. Combustion and Flame, 159, 905–917.Google Scholar
  64. 64.
    Cai, J., Zhang, L., Zhang, F., Wang, Z., Cheng, Z., & Qi, F. (2012). Experimental and kinetic modeling study of n-butanol pyrolysis and combustion. Energy & Fuels, 26, 5550–5568.Google Scholar
  65. 65.
    Cai, J., Zhang, L., Yang, J., Li, Y., & Qi, F. (2012). Experimental and kinetic modeling study of tert-butanol combustion at low pressure. Energy, 43, 94–102.Google Scholar
  66. 66.
    Cai, J., Yuan, W., Ye, L., Cheng, Z., Wang, Y., Zhang, L., et al. (2013). Experimental and kinetic modeling study of 2-butanol pyrolysis and combustion. Combustion and Flame, 160(10), 1939–1957.Google Scholar
  67. 67.
    Li, Y., Zhang, L., Wang, Z., Ye, L., Cai, J., Cheng, Z., et al. (2013). Experimental and kinetic modeling study of tetralin pyrolysis at low pressure. Proceedings of the Combustion Institute, 34(1), 1739–1748.Google Scholar
  68. 68.
    Lucassen, A., Wang, Z., Zhang, L., Zhang, F., Yuan, W., Wang, Y., et al. (2013). An experimental and theoretical study of pyrrolidine pyrolysis at low pressure. Proceedings of the Combustion Institute, 34(1), 641–648.Google Scholar
  69. 69.
    Wang, Z., Cheng, Z., Yuan, W., Cai, J., Zhang, L., Zhang, F., et al. (2012). An experimental and kinetic modeling study of cyclohexane pyrolysis at low pressure. Combustion and Flame, 159(7), 2243–2253.Google Scholar
  70. 70.
    Wang, Z., Ye, L., Yuan, W., Zhang, L., Wang, Y., Cheng, Z., et al. (2014). Experimental and kinetic modeling study on methylcyclohexane pyrolysis and combustion. Combustion and Flame, 161, 84–100.Google Scholar
  71. 71.
    Herbinet, O., Husson, B., Serinyel, Z., Cord, M., Warth, V., Fournet, R., et al. (2012). Experimental and modeling investigation of the low-temperature oxidation of n-heptane. Combustion and Flame, 159(12), 3455–3471.Google Scholar
  72. 72.
    Battin-Leclerc, F., Rodriguez, A., Husson, B., Herbinet, O., Glaude, P. A., Wang, Z., et al. (2014). Products from the oxidation of linear isomers of hexene. The Journal of Physical Chemistry A, 118(4), 673–683.Google Scholar
  73. 73.
    Cuoci, A., Frassoldati, A., Faravelli, T., Jin, H., Wang, Y., Zhang, K., et al. (2013). Experimental and detailed kinetic modeling study of PAH formation in laminar co-flow methane diffusion flames. Proceedings of the Combustion Institute, 34(1), 1811–1818.Google Scholar
  74. 74.
    Jin, H., Wang, Y., Zhang, K., Guo, H., & Qi, F. (2013). An experimental study on the formation of polycyclic aromatic hydrocarbons in laminar coflow non-premixed methane/air flames doped with four isomeric butanols. Proceedings of the Combustion Institute, 34(1), 779–786.Google Scholar
  75. 75.
    Jin, H., Cuoci, A., Frassoldati, A., Faravelli, T., Wang, Y., Li, Y., et al. (2014). Experimental and kinetic modeling study of PAH formation in methane coflow diffusion flames doped with n-butanol. Combustion and Flame, 161(3), 657–670.Google Scholar
  76. 76.
    Zhou, Z., Wang, Y., Tang, X., Wu, W., & Qi, F. (2013). A new apparatus for study of pressure-dependent laminar premixed flames with vacuum ultraviolet photoionization mass spectrometry. Review of Scientific Instruments, 84(1), 014101.Google Scholar
  77. 77.
    Skeen, S. A., Yang, B., Michelsen, H. A., Miller, J. A., Violi, A., & Hansen, N. (2013). Studies of laminar opposed-flow diffusion flames of acetylene at low-pressures with photoionization mass spectrometry. Proceedings of the Combustion Institute, 34(1), 1067–1075.Google Scholar
  78. 78.
    Skeen, S. A., Michelsen, H. A., Wilson, K. R., Popolan, D. M., Violi, A., & Hansen, N. (2013). Near-threshold photoionization mass spectra of combustion-generated high-molecular-weight soot precursors. Journal of Aerosol Science, 58, 86–102.Google Scholar
  79. 79.
    Dubreuil, A., Foucher, F., Mounaı¨m-Rousselle, C., Dayma, G., & Dagaut, P. (2007). HCCI combustion: Effect of NO in EGR. Proceedings of the Combustion Institute, 31(2), 2879–2886.Google Scholar
  80. 80.
    Bahrini, C., Morajkar, P., Schoemaecker, C., Frottier, O., Herbinet, O., Glaude, P. A., et al. (2013). Experimental and modeling study of the oxidation of n-butane in a jet stirred reactor using cw-CRDS measurements. Physical Chemistry Chemical Physics, 15(45), 19686–19698.Google Scholar
  81. 81.
    Bahrini, C., Herbinet, O., Glaude, P.-A., Schoemaecker, C., Fittschen, C., & Battin-Leclerc, F. (2012). Quantification of hydrogen peroxide during the low-temperature oxidation of alkanes. Journal of the American Chemical Society, 134(29), 11944–11947.Google Scholar
  82. 82.
    Blocquet, M., Schoemaecker, C., Amedro, D., Herbinet, O., Battin-Leclerc, F., & Fittschen, C. (2013). Quantification of OH and HO2 radicals during the low-temperature oxidation of hydrocarbons by Fluorescence Assay by Gas Expansion technique. Proceedings of the National Academy of Sciences, 110, 20014–20017.Google Scholar
  83. 83.
    Brumfield, B., Sun, W., Ju, Y., & Wysocki, G. (2013). Direct In situ quantification of HO2 from a flow reactor. The Journal of Physical Chemistry Letters, 4(6), 872–876.Google Scholar
  84. 84.
    Brumfield, B., Sun, W., Wang, Y., Ju, Y., & Wysocki, G. (2014). Dual modulation Faraday rotation spectroscopy of HO2 in a flow reactor. Optics Letters, 39(7), 1783–1786.Google Scholar
  85. 85.
    Edwards, T., & Maurice, L. Q. (2001). Surrogate mixtures to represent complex aviation and rocket fuels. Journal of Propulsion and Power, 17(2), 461–466.Google Scholar
  86. 86.
    Westbrook, C. K., & Smith, P. J. (2006). Basic research needs for clean and efficient combustion of 21st century transportation fuels. Livermore: Office of Science, U.S. Department of Energy.Google Scholar
  87. 87.
    Davis, A. C., Tangprasertchai, N., & Francisco, J. S. (2012). Hydrogen Migrations in Alkylcycloalkyl Radicals: Implications for Chain-Branching Reactions in Fuels. Chemistry—A European Journal, 18(36), 11296–11305.Google Scholar
  88. 88.
    Hadaller, O. J., & Johnson, J. M. (2006). World fuel sampling program. CRC Aviation Fuel, Lubricant & Equipment research committee of the coordinating research council, Inc.Google Scholar
  89. 89.
    Edwards, T., Shafer, L., Striebich, R., & Gomach, J. (2006). Chemical class composition of commercial jet fuels and other specialty kerosene fuels. In 14th AIAA/AHI space planes and hypersonic systems and technologies conference. American Institute of Aeronautics and Astronautics.Google Scholar
  90. 90.
    Farrell, J. T., Cernansky, N. P., Dryer, F. L., Law, C. K., Friend, D. G., Hergart, C. A., et al. (2007). Development of an experimental database and kinetic models for surrogate diesel fuels. Society of Automotive Engineers, SAE Paper 2007-01-0201.Google Scholar
  91. 91.
    Pitz, W. J., Cernansky, N. P., Dryer, F. L., Egolfopoulos, F. N., Farrell, J. T., Friend, D.G., et al. (2007). Development of an experimental database and chemical kinetic models for surrogate gasoline fuels. Society of Automotive Engineers, SAE Paper 2007-01-0175.Google Scholar
  92. 92.
    Colket, M., Edwards, T., Williams, S., Cernansky, N., Miller, D.L., Egolfopoulos, F., et al. (2007). Development of an experimental database and kinetic models for surrogate jet fuels. in 45th AIAA Aerospace Sciences Meeting and Exhibit Proceedings. Reno, NV.Google Scholar
  93. 93.
    Pitz, W. J., & Mueller, C. J. (2011). Recent progress in the development of diesel surrogate fuels. Progress in Energy and Combustion Science, 37(3), 330–350.Google Scholar
  94. 94.
    Curran, H. J., Gaffuri, P., Pitz, W. J., & Westbrook, C. K. (1998). A comprehensive modeling study of n-heptane oxidation. Combustion and Flame, 114(1–2), 149–177.Google Scholar
  95. 95.
    Sheen, D. A., & Wang, H. (2011). Combustion kinetic modeling using multispecies time histories in shock-tube oxidation of heptane. Combustion and Flame, 158(4), 645–656.Google Scholar
  96. 96.
    Curran, H. J., Gaffuri, P., Pitz, W. J., & Westbrook, C. K. (2002). A comprehensive modeling study of iso-octane oxidation. Combustion and Flame, 129(3), 253–280.Google Scholar
  97. 97.
    Agosta, A., Cernansky, N. P., Miller, D. L., Faravelli, T., & Ranzi, E. (2004). Reference components of jet fuels: Kinetic modeling and experimental results. Experimental Thermal and Fluid Science, 28(7), 701–708.Google Scholar
  98. 98.
    Violi, A., Yan, S., Eddings, E. G., Sarofim, A. F., Granata, S., Faravelli, T., et al. (2002). Experimental formulation and kinetic model for JP-8 surrogate mixtures. Combustion Science and Technology, 174(11–2), 399–417.Google Scholar
  99. 99.
    Grumman, N. (2003). Diesel fuel oils. Report NGMS-232 PPS, January 2004.Google Scholar
  100. 100.
    Silke, E. J., Pitz, W. J., Westbrook, C. K., & Ribaucour, M. (2007). Detailed chemical kinetic modeling of cyclohexane oxidation. Journal of Physical Chemistry A, 111(19), 3761–3775.Google Scholar
  101. 101.
    Shafer, L., Striebich, R., Gomach, J., & Edwards, T. (2006, November) Chemical class composition of commercial jet fuels and other specialty kerosene fuels. AIAA Paper 2006–7972.Google Scholar
  102. 102.
    Fan, X., Yu, G. (2006). Analysis of thermophysical properties of Daqing RP-3 aviation kerosene. Journal of Propulsion Technology, 27(2): 187–192.Google Scholar
  103. 103.
    El Bakali, A., Braun-Unkhoff, M., Dagaut, P., Frank, P., & Cathonnet, M. (2000). Detailed kinetic reaction mechanism for cyclohexane oxidation at pressure up to ten atmospheres. Proceedings of the Combustion Institute, 28, 1631–1638.Google Scholar
  104. 104.
    Lemaire, O., Ribaucour, M., Carlier, M., & Minetti, R. (2001). The production of benzene in the low-temperature oxidation of cyclohexane, cyclohexene, and cyclohexa-1,3-diene. Combustion and Flame, 127(1–2), 1971–1980.Google Scholar
  105. 105.
    Law, M. E., Westmoreland, P. R., Cool, T. A., Wang, J., Hansen, N., Taatjes, C. A., et al. (2007). Benzene precursors and formation routes in a stoichiometric cyclohexane flame. Proceedings of the Combustion Institute, 31, 565–573.Google Scholar
  106. 106.
    Sirjean, B., Buda, F., Hakka, H., Glaude, P. A., Fournet, R., Warth, V., et al. (2007). The autoignition of cyclopentane and cyclohexane in a shock tube. Proceedings of the Combustion Institute, 31, 277–284.Google Scholar
  107. 107.
    Daley, S. M., Berkowitz, A. M., & Oehlschlaeger, M. A. (2008). A shock tube study of cyclopentane and cyclohexane ignition at elevated pressures. International Journal of Chemical Kinetics, 40(10), 624–634.Google Scholar
  108. 108.
    Yang, Y., & Boehman, A. L. (2009). Experimental study of cyclohexane and methylcyclohexane oxidation at low to intermediate temperature in a motored engine. Proceedings of the Combustion Institute, 32, 419–426.Google Scholar
  109. 109.
    Ciajolo, A., Tregrossi, A., Mallardo, M., Faravelli, T., & Ranzi, E. (2009). Experimental and kinetic modeling study of sooting atmospheric-pressure cyclohexane flame. Proceedings of the Combustion Institute, 32, 585–591.Google Scholar
  110. 110.
    Wu, F., Kelley, A. P., & Law, C. K. (2012). Laminar flame speeds of cyclohexane and mono-alkylated cyclohexanes at elevated pressures. Combustion and Flame, 159(4), 1417–1425.Google Scholar
  111. 111.
    Vranckx, S., Lee, C., Chakravarty, H. K., & Fernandes, R. X. (2013). A rapid compression machine study of the low temperature combustion of cyclohexane at elevated pressures. Proceedings of the Combustion Institute, 34(1), 377–384.Google Scholar
  112. 112.
    Orme, J. P., Curran, H. J., & Simmie, J. M. (2006). Experimental and modeling study of methyl cyclohexane pyrolysis and oxidation. Journal of Physical Chemistry A, 110(1), 114–131.Google Scholar
  113. 113.
    Pitz, W. J., Naik, C. V., Mhaoldúin, T. N., Westbrook, C. K., Curran, H. J., Orme, J. P., et al. (2007). Modeling and experimental investigation of methylcyclohexane ignition in a rapid compression machine. Proceedings of the Combustion Institute, 31, 267–275.Google Scholar
  114. 114.
    Mittal, G., & Sung, C. J. (2009). Autoignition of methylcyclohexane at elevated pressures. Combustion and Flame, 156(9), 1852–1855.Google Scholar
  115. 115.
    Vanderover, J., & Oehlschlaeger, M. A. (2009). Ignition time measurements for methylcylcohexane- and ethylcyclohexane-air mixtures at elevated pressures. International Journal of Chemical Kinetics, 41(2), 82–91.Google Scholar
  116. 116.
    Skeen, S. A., Yang, B., Jasper, A. W., Pitz, W. J., & Hansen, N. (2011). Chemical structures of low-pressure premixed methylcyclohexane flames as benchmarks for the development of a predictive combustion chemistry model. Energy & Fuels, 25, 5611–5625.Google Scholar
  117. 117.
    Husson, B., Herbinet, O., Glaude, P. A., Ahmed, S. S., & Battin-Leclerc, F. (2012). Detailed product analysis during low- and intermediate-temperature oxidation of ethylcyclohexane. Journal of Physical Chemistry A, 116(21), 5100–5111.Google Scholar
  118. 118.
    Ristori, A., Dagaut, P., El Bakali, A., & Cathonnet, M. (2001). The oxidation of n-propylcyclohexane: Experimental results and kinetic modeling. Combustion Science and Technology, 165, 197–228.Google Scholar
  119. 119.
    Crochet, M., Minetti, R., Ribaucour, M., & Vanhove, G. (2010). A detailed experimental study of n-propylcyclohexane autoignition in lean conditions. Combustion and Flame, 157(11), 2078–2085.Google Scholar
  120. 120.
    Ji, C., Dames, E., Sirjean, B., Wang, H., & Egolfopoulos, F. N. (2011). An experimental and modeling study of the propagation of cyclohexane and mono-alkylated cyclohexane flames. Proceedings of the Combustion Institute, 33, 971–978.Google Scholar
  121. 121.
    Natelson, R. H., Kurman, M. S., Cernansky, N. P., & Miller, D. L. (2011). Low temperature oxidation of n-butylcyclohexane. Combustion and Flame, 158(12), 2325–2337.Google Scholar
  122. 122.
    Hong, Z., Lam, K.-Y., Davidson, D. F., & Hanson, R. K. (2011). A comparative study of the oxidation characteristics of cyclohexane, methylcyclohexane, and n-butylcyclohexane at high temperatures. Combustion and Flame, 158(8), 1456–1468.Google Scholar
  123. 123.
    Brown, T. C., King, K. D., & Nguyent, T. T. (1986). Kinetics of primary processes in the pyrolysis of cyclopentanes and cyclohexanes. Journal of Physical Chemistry, 90, 419–424.Google Scholar
  124. 124.
    Aribike, D. S., Susu, A. A., & Ogunye, A. F. (1981). Mechanistic and mathematical modeling of the thermal decompostion of cyclohexane. Thermochimica Acta, 51(2–3), 113–127.Google Scholar
  125. 125.
    Voisin, D., Marchal, A., Reuillon, M., Boettner, J. C., & Cathonnet, M. (1998). Experimental and kinetic modeling study of cyclohexane oxidation in a JSR at high pressure. Combustion Science and Technology, 138(1–6), 137–158.Google Scholar
  126. 126.
    Kiefer, J. H., Gupte, K. S., Harding, L. B., & Klippenstein, S. J. (2009). Shock tube and theory investigation of cyclohexane and 1-hexene decomposition. Journal of Physical Chemistry A, 113(48), 13570–13583.Google Scholar
  127. 127.
    Brown, T. C., & King, K. D. (1989). Very low-pressure pyrolysis (VLPP) of methyl- and ethynyl-cyclopentanes and cyclohexanes. International Journal of Chemical Kinetics, 21(4), 251–266.Google Scholar
  128. 128.
    Billaud, F., Chaverot, P., Berthelin, M., & Freund, E. (1988). Thermal decomposition of cyclohexane at approximately 810 ℃. Industrial and Engineering Chemistry Research, 27, 759–764.Google Scholar
  129. 129.
    Bennett, P. J., Gregory, D., & Jackson, R. A. (1996). Mechanistic studies on the combustion of isotopically labelled cyclohexanes within a single cylinder internal combustion engine. Combustion Science and Technology, 115(1–3), 83–103.Google Scholar
  130. 130.
    McEnally, C. S., & Pfefferle, L. D. (2004). Experimental study of fuel decomposition and hydrocarbon growth processes for cyclohexane and related compounds in nonpremixed flames. Combustion and Flame, 136(1–2), 155–167.Google Scholar
  131. 131.
    Li, W., Law, M. E., Westmoreland, P. R., Kasper, T., Hansen, N., & Kohse-Höinghaus, K. (2011). Multiple benzene-formation paths in a fuel-rich cyclohexane flame. Combustion and Flame, 158(11), 2077–2089.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.University of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations