Advertisement

Response Theory and Molecular Properties

  • Shane M. Parker
  • Filipp FurcheEmail author
Chapter

Abstract

The calculation of molecular properties, both static and dynamic, is a central goal of theoretical chemical physics. Within response theory, time-dependent properties are obtained as functional derivatives of the quantum mechanical action functional. We review how linear and nonlinear response properties may be derived from the action functional using exact electronic states, as well as within time-dependent density functional theory. Particular emphasis is given to recently discovered spurious poles in approximate nonlinear response functions.

Keywords

Response theory Nonlinear properties Quantum action Time-dependent density functional theory Electron correlation 

Notes

Acknowledgements

The authors would like to acknowledge helpful discussions with Sreeganesh Balasubramani. This material is based on work supported by the US Department of Energy under Award Number DE-SC0008694. SMP is supported by an Arnold O. Beckman Postdoctoral Fellowship.

References

  1. 1.
    E. Tapavicza, A.M. Meyer, F. Furche, Phys. Chem. Chem. Phys. 13(47), 20986 (2011),  https://doi.org/10.1039/c1cp21292c
  2. 2.
    J.C. Vincent, M. Muuronen, K.C. Pearce, L.N. Mohanam, E. Tapavicza, F. Furche, J. Phys. Chem. Lett. 7(20), 4185 (2016),  https://doi.org/10.1021/acs.jpclett.6b02037
  3. 3.
    Z. Li, B. Suo, W. Liu, J. Chem. Phys. 141(24), 244105 (2014),  https://doi.org/10.1063/1.4903986
  4. 4.
    Q. Ou, G.D. Bellchambers, F. Furche, J.E. Subotnik, J. Chem. Phys. 142(6), 064114 (2015),  https://doi.org/10.1063/1.4906941
  5. 5.
    X. Zhang, J.M. Herbert, J. Chem. Phys. 142(6), 064109 (2015),  https://doi.org/10.1063/1.4907376
  6. 6.
    E. Dalgaard, Phys. Rev. A 26, 42 (1982),  https://doi.org/10.1103/PhysRevA.26.42
  7. 7.
    S.M. Parker, S. Roy, F. Furche, J. Chem. Phys. 145(13), 134105 (2016),  https://doi.org/10.1063/1.4963749
  8. 8.
    Z. Hu, J. Autschbach, L. Jensen, J. Chem. Theory Comput. 12(3), 1294 (2016),  https://doi.org/10.1021/acs.jctc.5b01060
  9. 9.
    P.A.M. Dirac, Phys. Zeit. der Sowjetunion 3, 64 (1933)Google Scholar
  10. 10.
    H. Sambe, Phys. Rev. A 7(6), 2203 (1973),  https://doi.org/10.1103/PhysRevA.7.2203
  11. 11.
    J.S. Howland, Math. Ann. 207(4), 315 (1974),  https://doi.org/10.1007/BF01351346
  12. 12.
    J. Olsen, P. Jorgensen, J. Chem. Phys. 82, 3235 (1985),  https://doi.org/10.1063/1.448223
  13. 13.
    R. van Leeuwen, Int. J. Mod. Phys. B 15, 1969 (2001),  https://doi.org/10.1142/S021797920100499X
  14. 14.
    R. van Leeuwen, Phys. Rev. Lett. 80, 1280 (1998),  https://doi.org/10.1103/PhysRevLett.80.1280
  15. 15.
    E. Wigner, Math. Naturwiss. Anz. Ungar. Akad. Wiss. 35, 477 (1935)Google Scholar
  16. 16.
    T. Helgaker, P. Jørgensen, Calculation of geometrical derivatives in molecular electronic structure theory, in Methods in Computational Molecular Physics (Springer US, Boston, MA, 1992), pp. 353–421,  https://doi.org/10.1007/978-1-4615-7419-4_15
  17. 17.
    P.W. Langhoff, S.T. Epstein, M. Karplus, Rev. Mod. Phys. 44(3), 602 (1972),  https://doi.org/10.1103/RevModPhys.44.602
  18. 18.
    J.E. Rice, N.C. Handy, J. Chem. Phys. 94(7), 4959 (1991),  https://doi.org/10.1063/1.460558
  19. 19.
    J.E. Rice, N.C. Handy, Int. J. Quantum Chem. 43(1), 91 (1992),  https://doi.org/10.1002/qua.560430110
  20. 20.
    K. Sasagane, F. Aiga, R. Itoh, J. Chem. Phys. 99(5), 3738 (1993),  https://doi.org/10.1063/1.466123
  21. 21.
    O. Christiansen, P. Jørgensen, C. Hättig, Int. J. Quant. Chem. 68(1), 1 (1998),  https://doi.org/10.1002/(SICI)1097-461X(1998)68:1<1::AID-QUA1>3.0.CO;2-Z
  22. 22.
    F. Pawłowski, J. Olsen, P. Jorgensen, J. Chem. Phys 142(11), 114109 (2015),  https://doi.org/10.1063/1.4913364
  23. 23.
    D.M. Bishop, J. Chem. Phys. 100(9), 6535 (1994),  https://doi.org/10.1063/1.467062
  24. 24.
    E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984),  https://doi.org/10.1103/PhysRev.140.A1133
  25. 25.
    E.K.U. Gross, W. Kohn, Adv. Quant. Chem. 21, 255 (1990),  https://doi.org/10.1016/S0065-3276(08)60600-0
  26. 26.
    R. Neumann, R.H. Nobes, N.C. Handy, Mol. Phys. 87, 1 (1996),  https://doi.org/10.1080/00268979600100011
  27. 27.
    R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 256, 454 (1996),  https://doi.org/10.1063/1.471637
  28. 28.
    J.E. Bates, F. Furche, J. Chem. Phys. 137, 164105 (2012),  https://doi.org/10.1063/1.4759080
  29. 29.
    M.E. Casida, Time-dependent density functional response theory for molecules, in Recent Advances in Computational Chemistry, vol. 1 (World Scientific, Singapore, 1995), pp. 155–192Google Scholar
  30. 30.
    R.E. Stratmann, G.E. Scuseria, M.J. Frisch, J. Chem. Phys. 109, 8218 (1998),  https://doi.org/10.1021/ja00023a041
  31. 31.
    F. Furche, J. Chem. Phys. 114, 5982 (2001),  https://doi.org/10.1063/1.1353585

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.University of California, IrvineIrvineUSA

Personalised recommendations